Abstract

This article presents free-floating three-dimensional (3D) microstructure fabrication in a microfluidic channel using direct fine-tuned grayscale image lithography. The image is designed as a freeform shape and is composed of gray shades as light-absorbing features. Gray shade levels are modulated through multiple reflections of light in a digital micromirror device (DMD) to produce different height formations. Whereas conventional photolithography has several limitations in producing grayscale colors on photomask features, our method focuses on a maskless, single-shot process for fabrication of freeform 3D micro-scale shapes. The fine-tuned gray image is designed using an 8-bit grayscale color; thus, each pixel is capable of displaying 256 gray shades. The pattern of the UV light reflecting on the DMD is transferred to a photocurable resin flowing through a microfluidic channel. Here, we demonstrate diverse free-floating 3D microstructure fabrication using fine-tuned grayscale image lithography. Additionally, we produce polymeric microstructures with locally embedded gray encoding patterns, such as grayscale-encoded microtags. This functional microstructure can be applied to a biophysical detection system combined with 3D microstructures. This method would be suitable for fabricating 3D microstructures that have a specific morphology to be used for particular biological or medical applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Madou, Fundamentals of Microfabrication (CRC Press, 1997).
  2. C. Chihchen, D. Hirdes, and A. Folch, Proc. Natl. Acad. Sci. USA 100, 1499 (2003).
  3. A. J. Chung, D. R. Gossett, and D. D. Carlo, Small 9, 685 (2013).
    [CrossRef]
  4. D. D. Carlo, N. Aghdam, and L. P. Lee, Anal. Chem. 78, 4925 (2006).
    [CrossRef]
  5. J. S. Park, S. H. Song, and H. I. Jung, Lab Chip 9, 939 (2009).
    [CrossRef]
  6. S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, Nat. Mater. 7, 581 (2008).
    [CrossRef]
  7. J. A. Rogers, K. E. Paul, R. J. Jackman, and G. M. Whitesides, Appl. Phys. Lett. 70, 2658 (1997).
    [CrossRef]
  8. S. Maruo, O. Nakamura, and S. Kawata, Opt. Lett. 22, 132 (1997).
    [CrossRef]
  9. H. B. Sun and S. Kawata, NMR/3D Analysis/Photopolymerization (Springer, 2004).
  10. S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, Appl. Phys. Lett. 91, 041106 (2007).
    [CrossRef]
  11. D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, Nat. Mater. 5, 365 (2006).
    [CrossRef]
  12. G. M. Whitesides, E. Ostuni, S. Takayama, X. Y. Jiang, and D. E. Ingber, Annu. Rev. Biomed. Eng. 3, 335 (2001).
    [CrossRef]
  13. D. Dendukuri, P. Panda, R. Haghgooie, J. M. Kim, T. A. Hatton, and P. S. Doyle, Macromolecules 41, 8547 (2008).
    [CrossRef]
  14. D. Dudley, W. M. Duncan, and J. Slaughter, Proc. SPIE 4985, 14 (2003).
    [CrossRef]
  15. L. J. Hornbeck, Digital Light Processing: A New MEMS-Based Display Technology (Texas Instruments, 1996).
  16. S. Johnson, Stephen Johnson on Digital Photography (O’Reilly Media, 2006).

2013

A. J. Chung, D. R. Gossett, and D. D. Carlo, Small 9, 685 (2013).
[CrossRef]

2009

J. S. Park, S. H. Song, and H. I. Jung, Lab Chip 9, 939 (2009).
[CrossRef]

2008

S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, Nat. Mater. 7, 581 (2008).
[CrossRef]

D. Dendukuri, P. Panda, R. Haghgooie, J. M. Kim, T. A. Hatton, and P. S. Doyle, Macromolecules 41, 8547 (2008).
[CrossRef]

2007

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, Appl. Phys. Lett. 91, 041106 (2007).
[CrossRef]

2006

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, Nat. Mater. 5, 365 (2006).
[CrossRef]

D. D. Carlo, N. Aghdam, and L. P. Lee, Anal. Chem. 78, 4925 (2006).
[CrossRef]

2003

D. Dudley, W. M. Duncan, and J. Slaughter, Proc. SPIE 4985, 14 (2003).
[CrossRef]

C. Chihchen, D. Hirdes, and A. Folch, Proc. Natl. Acad. Sci. USA 100, 1499 (2003).

2001

G. M. Whitesides, E. Ostuni, S. Takayama, X. Y. Jiang, and D. E. Ingber, Annu. Rev. Biomed. Eng. 3, 335 (2001).
[CrossRef]

1997

S. Maruo, O. Nakamura, and S. Kawata, Opt. Lett. 22, 132 (1997).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, and G. M. Whitesides, Appl. Phys. Lett. 70, 2658 (1997).
[CrossRef]

Aghdam, N.

D. D. Carlo, N. Aghdam, and L. P. Lee, Anal. Chem. 78, 4925 (2006).
[CrossRef]

Carlo, D. D.

A. J. Chung, D. R. Gossett, and D. D. Carlo, Small 9, 685 (2013).
[CrossRef]

D. D. Carlo, N. Aghdam, and L. P. Lee, Anal. Chem. 78, 4925 (2006).
[CrossRef]

Chihchen, C.

C. Chihchen, D. Hirdes, and A. Folch, Proc. Natl. Acad. Sci. USA 100, 1499 (2003).

Chung, A. J.

A. J. Chung, D. R. Gossett, and D. D. Carlo, Small 9, 685 (2013).
[CrossRef]

Chung, S. E.

S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, Nat. Mater. 7, 581 (2008).
[CrossRef]

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, Appl. Phys. Lett. 91, 041106 (2007).
[CrossRef]

Collins, J.

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, Nat. Mater. 5, 365 (2006).
[CrossRef]

Dendukuri, D.

D. Dendukuri, P. Panda, R. Haghgooie, J. M. Kim, T. A. Hatton, and P. S. Doyle, Macromolecules 41, 8547 (2008).
[CrossRef]

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, Nat. Mater. 5, 365 (2006).
[CrossRef]

Doyle, P. S.

D. Dendukuri, P. Panda, R. Haghgooie, J. M. Kim, T. A. Hatton, and P. S. Doyle, Macromolecules 41, 8547 (2008).
[CrossRef]

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, Nat. Mater. 5, 365 (2006).
[CrossRef]

Dudley, D.

D. Dudley, W. M. Duncan, and J. Slaughter, Proc. SPIE 4985, 14 (2003).
[CrossRef]

Duncan, W. M.

D. Dudley, W. M. Duncan, and J. Slaughter, Proc. SPIE 4985, 14 (2003).
[CrossRef]

Folch, A.

C. Chihchen, D. Hirdes, and A. Folch, Proc. Natl. Acad. Sci. USA 100, 1499 (2003).

Gossett, D. R.

A. J. Chung, D. R. Gossett, and D. D. Carlo, Small 9, 685 (2013).
[CrossRef]

Haghgooie, R.

D. Dendukuri, P. Panda, R. Haghgooie, J. M. Kim, T. A. Hatton, and P. S. Doyle, Macromolecules 41, 8547 (2008).
[CrossRef]

Hatton, T. A.

D. Dendukuri, P. Panda, R. Haghgooie, J. M. Kim, T. A. Hatton, and P. S. Doyle, Macromolecules 41, 8547 (2008).
[CrossRef]

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, Nat. Mater. 5, 365 (2006).
[CrossRef]

Hirdes, D.

C. Chihchen, D. Hirdes, and A. Folch, Proc. Natl. Acad. Sci. USA 100, 1499 (2003).

Hornbeck, L. J.

L. J. Hornbeck, Digital Light Processing: A New MEMS-Based Display Technology (Texas Instruments, 1996).

Ingber, D. E.

G. M. Whitesides, E. Ostuni, S. Takayama, X. Y. Jiang, and D. E. Ingber, Annu. Rev. Biomed. Eng. 3, 335 (2001).
[CrossRef]

Jackman, R. J.

J. A. Rogers, K. E. Paul, R. J. Jackman, and G. M. Whitesides, Appl. Phys. Lett. 70, 2658 (1997).
[CrossRef]

Jiang, X. Y.

G. M. Whitesides, E. Ostuni, S. Takayama, X. Y. Jiang, and D. E. Ingber, Annu. Rev. Biomed. Eng. 3, 335 (2001).
[CrossRef]

Johnson, S.

S. Johnson, Stephen Johnson on Digital Photography (O’Reilly Media, 2006).

Jung, H. I.

J. S. Park, S. H. Song, and H. I. Jung, Lab Chip 9, 939 (2009).
[CrossRef]

Kawata, S.

S. Maruo, O. Nakamura, and S. Kawata, Opt. Lett. 22, 132 (1997).
[CrossRef]

H. B. Sun and S. Kawata, NMR/3D Analysis/Photopolymerization (Springer, 2004).

Kim, J. M.

D. Dendukuri, P. Panda, R. Haghgooie, J. M. Kim, T. A. Hatton, and P. S. Doyle, Macromolecules 41, 8547 (2008).
[CrossRef]

Kwon, S.

S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, Nat. Mater. 7, 581 (2008).
[CrossRef]

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, Appl. Phys. Lett. 91, 041106 (2007).
[CrossRef]

Lee, L. P.

D. D. Carlo, N. Aghdam, and L. P. Lee, Anal. Chem. 78, 4925 (2006).
[CrossRef]

Lee, S. A.

S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, Nat. Mater. 7, 581 (2008).
[CrossRef]

Madou, M. J.

M. J. Madou, Fundamentals of Microfabrication (CRC Press, 1997).

Maruo, S.

Nakamura, O.

Ostuni, E.

G. M. Whitesides, E. Ostuni, S. Takayama, X. Y. Jiang, and D. E. Ingber, Annu. Rev. Biomed. Eng. 3, 335 (2001).
[CrossRef]

Panda, P.

D. Dendukuri, P. Panda, R. Haghgooie, J. M. Kim, T. A. Hatton, and P. S. Doyle, Macromolecules 41, 8547 (2008).
[CrossRef]

Park, H.

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, Appl. Phys. Lett. 91, 041106 (2007).
[CrossRef]

Park, J. S.

J. S. Park, S. H. Song, and H. I. Jung, Lab Chip 9, 939 (2009).
[CrossRef]

Park, N.

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, Appl. Phys. Lett. 91, 041106 (2007).
[CrossRef]

Park, W.

S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, Nat. Mater. 7, 581 (2008).
[CrossRef]

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, Appl. Phys. Lett. 91, 041106 (2007).
[CrossRef]

Paul, K. E.

J. A. Rogers, K. E. Paul, R. J. Jackman, and G. M. Whitesides, Appl. Phys. Lett. 70, 2658 (1997).
[CrossRef]

Pregibon, D. C.

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, Nat. Mater. 5, 365 (2006).
[CrossRef]

Rogers, J. A.

J. A. Rogers, K. E. Paul, R. J. Jackman, and G. M. Whitesides, Appl. Phys. Lett. 70, 2658 (1997).
[CrossRef]

Shin, S.

S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, Nat. Mater. 7, 581 (2008).
[CrossRef]

Slaughter, J.

D. Dudley, W. M. Duncan, and J. Slaughter, Proc. SPIE 4985, 14 (2003).
[CrossRef]

Song, S. H.

J. S. Park, S. H. Song, and H. I. Jung, Lab Chip 9, 939 (2009).
[CrossRef]

Sun, H. B.

H. B. Sun and S. Kawata, NMR/3D Analysis/Photopolymerization (Springer, 2004).

Takayama, S.

G. M. Whitesides, E. Ostuni, S. Takayama, X. Y. Jiang, and D. E. Ingber, Annu. Rev. Biomed. Eng. 3, 335 (2001).
[CrossRef]

Whitesides, G. M.

G. M. Whitesides, E. Ostuni, S. Takayama, X. Y. Jiang, and D. E. Ingber, Annu. Rev. Biomed. Eng. 3, 335 (2001).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, and G. M. Whitesides, Appl. Phys. Lett. 70, 2658 (1997).
[CrossRef]

Yu, K.

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, Appl. Phys. Lett. 91, 041106 (2007).
[CrossRef]

Anal. Chem.

D. D. Carlo, N. Aghdam, and L. P. Lee, Anal. Chem. 78, 4925 (2006).
[CrossRef]

Annu. Rev. Biomed. Eng.

G. M. Whitesides, E. Ostuni, S. Takayama, X. Y. Jiang, and D. E. Ingber, Annu. Rev. Biomed. Eng. 3, 335 (2001).
[CrossRef]

Appl. Phys. Lett.

J. A. Rogers, K. E. Paul, R. J. Jackman, and G. M. Whitesides, Appl. Phys. Lett. 70, 2658 (1997).
[CrossRef]

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, Appl. Phys. Lett. 91, 041106 (2007).
[CrossRef]

Lab Chip

J. S. Park, S. H. Song, and H. I. Jung, Lab Chip 9, 939 (2009).
[CrossRef]

Macromolecules

D. Dendukuri, P. Panda, R. Haghgooie, J. M. Kim, T. A. Hatton, and P. S. Doyle, Macromolecules 41, 8547 (2008).
[CrossRef]

Nat. Mater.

S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, Nat. Mater. 7, 581 (2008).
[CrossRef]

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, Nat. Mater. 5, 365 (2006).
[CrossRef]

Opt. Lett.

Proc. Natl. Acad. Sci. USA

C. Chihchen, D. Hirdes, and A. Folch, Proc. Natl. Acad. Sci. USA 100, 1499 (2003).

Proc. SPIE

D. Dudley, W. M. Duncan, and J. Slaughter, Proc. SPIE 4985, 14 (2003).
[CrossRef]

Small

A. J. Chung, D. R. Gossett, and D. D. Carlo, Small 9, 685 (2013).
[CrossRef]

Other

H. B. Sun and S. Kawata, NMR/3D Analysis/Photopolymerization (Springer, 2004).

L. J. Hornbeck, Digital Light Processing: A New MEMS-Based Display Technology (Texas Instruments, 1996).

S. Johnson, Stephen Johnson on Digital Photography (O’Reilly Media, 2006).

M. J. Madou, Fundamentals of Microfabrication (CRC Press, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the fine-tuned grayscale optofluidic maskless lithography system. The displayed grayscale image on the DMD reflects UV light toward a photocurable resin for the photopolymerization process in a microfluidic channel based on PDMS molds.

Fig. 2.
Fig. 2.

Grayscale color creator schemes. The eight-bit grayscale colors are named using a two-digit Hex code from GRAY00 to GRAYFF. The grayscale color creator uses hexadecimal values to express up to 256 gray values. Gray color conversion values of the Hex codes, GRAY00, GRAY88, and GRAYFF are 0 (black), 136 (mid gray), and 255 (white), respectively. Input pixel values are displayed using shade levels equal to the grayscale colors.

Fig. 3.
Fig. 3.

Fluorescence microscopy image with SEM pictures of grayscale microstructures. (a) Hanoi tower, (b) shell beans, (c) shells, and (d) wheels. Scale bar: 200 μm.

Fig. 4.
Fig. 4.

Grayscale color-encoded microtag. The microtag is an encoded gray value to 3×3 gray dots by Hex codes with GRAY33(51), GRAY66(102), GRAY99(153), and GRAYBB(187). The grayscale-encoded dots are decoded by fluorescent image analysis. Scale bar: 100 μm.

Metrics