Abstract

We experimentally demonstrate optical delay in the second-order Brillouin gain spectrum by incorporating a double Brillouin-frequency shifter into the system. By coinciding the seed signal with the second-order Brillouin gain spectrum, it was found that the seed signal experienced significantly larger delay as compared to the Brillouin slow light generated from the first-order Brillouin spectrum. At a Brillouin gain of 17 dB, the delay was found to be at maximum of 60 ns. This widens the window of promising opportunities into the deployment of all optical tunable delay into the existing optical signal processing.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Jager and A. Stohr, in Proceedings of the German Microwave Conference, W. Menzel, ed. (Ulm, Germany, 2005), p. 136.
  2. L. Thevenaz, Nat. Photonics 2, 474 (2008).
    [CrossRef]
  3. R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, J. Lightwave Technol. 23, 4046 (2005).
    [CrossRef]
  4. J. B. Khurgin, J. Opt. Soc. Am. B 22, 1062 (2005).
    [CrossRef]
  5. L. Ren and Y. Tomita, Proc. SPIE 7226, 722605 (2009).
    [CrossRef]
  6. J. B. Khurgin, Adv. Opt. Photon. 2, 287 (2010).
    [CrossRef]
  7. D. J. Gauthier, A. L. Gaeta, and R. W. Boyd, Photonics Spectra 40, 44 (2006).
  8. K. Y. Song, M. G. Herraez, and L. Thevenaz, Opt. Express 13, 82 (2005).
    [CrossRef]
  9. N. Zhu, Y. Wang, Q. Ren, L. Zhu, M. Yuan, and G. An, Opt. Laser Technol. 57, 154 (2014).
    [CrossRef]
  10. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef]
  11. Z. Zhu, A. M. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, J. Lightwave Technol. 25, 201 (2007).
    [CrossRef]
  12. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  13. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  14. Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, Appl. Opt. 49, 3956 (2010).
    [CrossRef]

2014 (1)

N. Zhu, Y. Wang, Q. Ren, L. Zhu, M. Yuan, and G. An, Opt. Laser Technol. 57, 154 (2014).
[CrossRef]

2010 (2)

2009 (1)

L. Ren and Y. Tomita, Proc. SPIE 7226, 722605 (2009).
[CrossRef]

2008 (1)

L. Thevenaz, Nat. Photonics 2, 474 (2008).
[CrossRef]

2007 (1)

2006 (1)

D. J. Gauthier, A. L. Gaeta, and R. W. Boyd, Photonics Spectra 40, 44 (2006).

2005 (4)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Al-Mansoori, M. H.

An, G.

N. Zhu, Y. Wang, Q. Ren, L. Zhu, M. Yuan, and G. An, Opt. Laser Technol. 57, 154 (2014).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Boyd, R. W.

D. J. Gauthier, A. L. Gaeta, and R. W. Boyd, Photonics Spectra 40, 44 (2006).

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

R. W. Boyd, Nonlinear Optics (Academic, 2003).

Chang-Hasnain, C. J.

Dawes, A. M.

Gaeta, A. L.

D. J. Gauthier, A. L. Gaeta, and R. W. Boyd, Photonics Spectra 40, 44 (2006).

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Gauthier, D. J.

Z. Zhu, A. M. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, J. Lightwave Technol. 25, 201 (2007).
[CrossRef]

D. J. Gauthier, A. L. Gaeta, and R. W. Boyd, Photonics Spectra 40, 44 (2006).

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Herraez, M. G.

Hitam, S.

Ismail, A.

Jager, D.

D. Jager and A. Stohr, in Proceedings of the German Microwave Conference, W. Menzel, ed. (Ulm, Germany, 2005), p. 136.

Khurgin, J. B.

Ku, P. C.

Mahdi, M. A.

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Ren, L.

L. Ren and Y. Tomita, Proc. SPIE 7226, 722605 (2009).
[CrossRef]

Ren, Q.

N. Zhu, Y. Wang, Q. Ren, L. Zhu, M. Yuan, and G. An, Opt. Laser Technol. 57, 154 (2014).
[CrossRef]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Shee, Y. G.

Song, K. Y.

Stohr, A.

D. Jager and A. Stohr, in Proceedings of the German Microwave Conference, W. Menzel, ed. (Ulm, Germany, 2005), p. 136.

Thevenaz, L.

Tomita, Y.

L. Ren and Y. Tomita, Proc. SPIE 7226, 722605 (2009).
[CrossRef]

Tucker, R. S.

Wang, Y.

N. Zhu, Y. Wang, Q. Ren, L. Zhu, M. Yuan, and G. An, Opt. Laser Technol. 57, 154 (2014).
[CrossRef]

Willner, A. E.

Yuan, M.

N. Zhu, Y. Wang, Q. Ren, L. Zhu, M. Yuan, and G. An, Opt. Laser Technol. 57, 154 (2014).
[CrossRef]

Zhang, L.

Zhu, L.

N. Zhu, Y. Wang, Q. Ren, L. Zhu, M. Yuan, and G. An, Opt. Laser Technol. 57, 154 (2014).
[CrossRef]

Zhu, N.

N. Zhu, Y. Wang, Q. Ren, L. Zhu, M. Yuan, and G. An, Opt. Laser Technol. 57, 154 (2014).
[CrossRef]

Zhu, Z.

Z. Zhu, A. M. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, J. Lightwave Technol. 25, 201 (2007).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Opt. (1)

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

L. Thevenaz, Nat. Photonics 2, 474 (2008).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

N. Zhu, Y. Wang, Q. Ren, L. Zhu, M. Yuan, and G. An, Opt. Laser Technol. 57, 154 (2014).
[CrossRef]

Photonics Spectra (1)

D. J. Gauthier, A. L. Gaeta, and R. W. Boyd, Photonics Spectra 40, 44 (2006).

Phys. Rev. Lett. (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Proc. SPIE (1)

L. Ren and Y. Tomita, Proc. SPIE 7226, 722605 (2009).
[CrossRef]

Other (3)

D. Jager and A. Stohr, in Proceedings of the German Microwave Conference, W. Menzel, ed. (Ulm, Germany, 2005), p. 136.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

R. W. Boyd, Nonlinear Optics (Academic, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Second-order Brillouin slow light configuration. TLS, tunable laser source; EDFA, erbium-doped fiber amplifier; OA, optical attenuator; OC, optical coupler; PM, power meter; PC, polarization controller; EOM, electro-optic modulator; PD, photodetector; OSA, optical spectrum analyzer, BP, Brillouin pump; BS1, first-order Brillouin Stokes signal; BS2, second-order Brillouin Stokes signal.

Fig. 2.
Fig. 2.

(a) Time waveforms for the second-order Brillouin slow light and (b) second-order Brillouin gain spectrum.

Fig. 3.
Fig. 3.

First-order Brillouin slow light configuration. TLS, tunable laser source; EDFA, erbium-doped fiber amplifier; OA, optical attenuator; OC, optical coupler; PM, power meter; PC, polarization controller; EOM, electro-optic modulator; PD, photodetector; OSA, optical spectrum analyzer, BP, Brillouin pump; BS1, first-order Brillouin Stokes signal; BS2, second-order Brillouin Stokes signal.

Fig. 4.
Fig. 4.

Time waveforms for the first-order Brillouin slow light.

Fig. 5.
Fig. 5.

(a) Optical delays that were induced by first-order Brillouin slow light. (b) Optical delays that were induced by second-order Brillouin slow light.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔTdGΓ{13[2(ωωs)/ΓB]2},

Metrics