Abstract

Over 3.5 W of continuous-wave power at 3.4 μm was obtained by single-pass difference frequency mixing of 1.064 and 1.55 μm fiber lasers in a 5 cm long periodically poled lithium niobate crystal. Good agreement was obtained between the observed temperature dependence of the generated power and the prediction from focused Gaussian beam theory.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Q. Zhao, B. Q. Yao, Y. Tian, and Y. Z. Wang, Laser Phys. 20, 1902 (2010).
    [CrossRef]
  2. L. Goldberg, W. K. Burns, and R. W. McElhanon, Opt. Lett. 20, 1280 (1995).
    [CrossRef]
  3. Q. H. Mao, J. Jiang, X. Q. Li, J. H. Chang, and W. Q. Liu, Laser Phys. Lett. 6, 647 (2009).
    [CrossRef]
  4. M. F. Witinski, J. B. Paul, and J. G. Anderson, Appl. Opt. 48, 2600 (2009).
    [CrossRef]
  5. D.-W. Chen, J. Opt. Soc. Am. B 20, 1527 (2003).
    [CrossRef]
  6. O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
    [CrossRef]
  7. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, J. Opt. Soc. Am. B 14, 2268 (1997).
    [CrossRef]
  8. S. Guha, Appl. Phys. B 66, 663 (1998).
    [CrossRef]

2010 (1)

J. Q. Zhao, B. Q. Yao, Y. Tian, and Y. Z. Wang, Laser Phys. 20, 1902 (2010).
[CrossRef]

2009 (2)

Q. H. Mao, J. Jiang, X. Q. Li, J. H. Chang, and W. Q. Liu, Laser Phys. Lett. 6, 647 (2009).
[CrossRef]

M. F. Witinski, J. B. Paul, and J. G. Anderson, Appl. Opt. 48, 2600 (2009).
[CrossRef]

2008 (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

2003 (1)

1998 (1)

S. Guha, Appl. Phys. B 66, 663 (1998).
[CrossRef]

1997 (1)

1995 (1)

Anderson, J. G.

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

Burns, W. K.

Chang, J. H.

Q. H. Mao, J. Jiang, X. Q. Li, J. H. Chang, and W. Q. Liu, Laser Phys. Lett. 6, 647 (2009).
[CrossRef]

Chen, D.-W.

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

Goldberg, L.

Guha, S.

S. Guha, Appl. Phys. B 66, 663 (1998).
[CrossRef]

Ito, R.

Jiang, J.

Q. H. Mao, J. Jiang, X. Q. Li, J. H. Chang, and W. Q. Liu, Laser Phys. Lett. 6, 647 (2009).
[CrossRef]

Kitamoto, A.

Kondo, T.

Li, X. Q.

Q. H. Mao, J. Jiang, X. Q. Li, J. H. Chang, and W. Q. Liu, Laser Phys. Lett. 6, 647 (2009).
[CrossRef]

Liu, W. Q.

Q. H. Mao, J. Jiang, X. Q. Li, J. H. Chang, and W. Q. Liu, Laser Phys. Lett. 6, 647 (2009).
[CrossRef]

Mao, Q. H.

Q. H. Mao, J. Jiang, X. Q. Li, J. H. Chang, and W. Q. Liu, Laser Phys. Lett. 6, 647 (2009).
[CrossRef]

McElhanon, R. W.

Paul, J. B.

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

Shirane, M.

Shoji, I.

Tian, Y.

J. Q. Zhao, B. Q. Yao, Y. Tian, and Y. Z. Wang, Laser Phys. 20, 1902 (2010).
[CrossRef]

Wang, Y. Z.

J. Q. Zhao, B. Q. Yao, Y. Tian, and Y. Z. Wang, Laser Phys. 20, 1902 (2010).
[CrossRef]

Witinski, M. F.

Yao, B. Q.

J. Q. Zhao, B. Q. Yao, Y. Tian, and Y. Z. Wang, Laser Phys. 20, 1902 (2010).
[CrossRef]

Zhao, J. Q.

J. Q. Zhao, B. Q. Yao, Y. Tian, and Y. Z. Wang, Laser Phys. 20, 1902 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

S. Guha, Appl. Phys. B 66, 663 (1998).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

J. Q. Zhao, B. Q. Yao, Y. Tian, and Y. Z. Wang, Laser Phys. 20, 1902 (2010).
[CrossRef]

Laser Phys. Lett. (1)

Q. H. Mao, J. Jiang, X. Q. Li, J. H. Chang, and W. Q. Liu, Laser Phys. Lett. 6, 647 (2009).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Setup used in the difference frequency generation experiment. The subscripts 1, 2, and 3 represent beams in increasing order of frequency, i.e., the “idler,” “signal,” and “pump’’ beams, respectively.

Fig. 2.
Fig. 2.

Transverse distributions of the two incident beams measured along x (solid lines) and y (dashed lines) directions at the focal planes, using a 10 μm diameter pinhole and a PbSe detector. Fitting to assumed Gaussian shapes, the values of r0x and r0y are 38 and 29 μm at 1.5498 μm, and 23 and 29 μm at 1.0646 μm, respectively.

Fig. 3.
Fig. 3.

Beam radii (half-widths at 1/e of intensity) along the x (circles) and y (squares) directions for the two incident beams. The solid lines show the predicted values of the radii assuming the beam distribution is Gaussian at the focal plane.

Fig. 4.
Fig. 4.

(a) Temperature dependence of DFG power P1 at near-maximum values of the powers P2 and P3. The dots show the measured values, and the solid line is the predicted value from Eq. (7) using Λ=30.545μm and deff=11pm/V. (b) Same data as in (a) plotted with logarithmic y axis. The dashed line in (b) shows the temperature dependence predicted when beam diffraction is ignored, i.e., with sin2(σ/2)/(σ/2)2 dependence.

Fig. 5.
Fig. 5.

DFG power P1 (closed circles) at the exit of the PPLN crystal measured as a function of incident beam power P2, for P3=42W. The solid line shows the predicted result from Eqs. (5)–(7), with P1 maximized with respect to phase mismatch parameter σ at every power value.

Fig. 6.
Fig. 6.

DFG power output measured as a function of time.

Fig. 7.
Fig. 7.

Two-dimensional distribution of the generated DFG beam at a distance of about 30 cm from the exit of the PPLN crystal.

Fig. 8.
Fig. 8.

Plots of h1m versus ξ3 for different values of ξ2: (a) 0.1, (b) 0.5, (c) 1.0, (d) 1.5, (e) 2.0, (f) 2.5, (g) 3.0, (h) 3.5, (i) 4.0. The refractive index values used are n1=2.144, n2=2.211, and n3=2.232, respectively, at the three wavelengths 3.4, 1.5498, and 1.0646 μm. The parameters μ2 and μ3 were both set equal to zero.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

u2(x1,y1,0)=p311iξ2{(1μ2)}×exp[ϱ122(x12+y121iξ2{(1μ2)})],u3(x1,y1,0)=11iξ3{(1μ3)}×exp[12(x12+y121iξ3{(1μ3)})],
ξ2λ24πn2r022,ξ3λ34πn3r032,
ϱ1r03r02,p3n3I20n2I30,
μ212f2,μ312f3,
P1=P2P3PDFh1,
PDFcε0n32λ1λ2232π2deff2
h1=2ξ2λ2λ3λ120101dz1dz2eiσ(z1z2)D(z1,z2),
D(z1,z2)N(z1)M*(z2)+M(z1)N*(z2),N(z)d2*(z)+ϱ12d3(z),M(z)n1λ3n3λ1d3(z)d2*(z)+2iξ3(1z)N(z),d2(z)1iξ2(1μ2)+2iξ2z,d3(z)1iξ3(1μ3)+2iξ3z,
σ(k3k2k12πΛ)

Metrics