Abstract

We demonstrate ultrafast all-optical switching in GaAs microdisk resonators using a femtosecond pump–probe technique through tapered-fiber coupling. The temporal tuning of the resonant modes resulted from the refractive index change due to photoexcited carrier density variation inside the GaAs microdisk resonator. Transmission through the GaAs microdisk resonator can be modulated by more than 10 dB with a switching time window of 8 ps in the switch-off operation using pumping pulses with energies as low as 17.5 pJ. The carrier lifetime was fitted to be 42 ps, much shorter than that of the bulk GaAs, typically of the order of nanoseconds. The above observation indicates that the surface recombination plays an important role in increasing the switching speed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, Nature 424, 839 (2003).
    [CrossRef]
  2. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
    [CrossRef]
  3. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, Opt. Lett. 29, 2867 (2004).
    [CrossRef]
  4. M. Först, J. Niehusmann, T. Plötzing, J. Bolten, T. Wahlbrink, C. Moormann, and H. Kurz, Opt. Lett. 32, 2046 (2007).
    [CrossRef]
  5. M. Waldow, T. Plötzing, M. Gottheil, M. Först, J. Bolten, T. Wahlbrink, and H. Kurz, Opt. Express 16, 7693 (2008).
    [CrossRef]
  6. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
    [CrossRef]
  7. T. A. Ibrahim, V. Van, and P.-T. Ho, Opt. Lett. 27, 803 (2002).
    [CrossRef]
  8. T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, IEEE Photon. Technol. Lett. 15, 36 (2003).
    [CrossRef]
  9. T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, J. Lightwave Technol. 21, 2997 (2003).
    [CrossRef]
  10. M.-H. Mao, H. C. Chien, J. Z. Hong, and C. Y. Cheng, Opt. Express 19, 14145 (2011).
    [CrossRef]
  11. B. Gayral, J. M. Gérard, A. Lemaîitre, C. Dupuis, L. Manin, and J. L. Pelouard, Appl. Phys. Lett. 75, 1908 (1999).
    [CrossRef]
  12. M. Borselli, T. J. Johnson, and O. Painter, Opt. Express 13, 1515 (2005).
    [CrossRef]
  13. J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice-Hall, 1995).
  14. J. G. Mendoza-Alvarez, F. D. Nunes, and N. B. Patel, J. Appl. Phys. 51, 4365 (1980).
    [CrossRef]
  15. B. R. Bennett, R. A. Soref, and J. A. D. Alamo, IEEE J. Quantum Electron. 26, 113 (1990).
    [CrossRef]
  16. H. C. Huang, S. Yee, and M. Soma, J. Appl. Phys. 67, 1497 (1990).
    [CrossRef]
  17. K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, IEEE J. Sel. Top. Quantum Electron. 9, 1355 (2003).
    [CrossRef]

2011 (1)

2008 (1)

2007 (1)

2005 (1)

2004 (2)

2003 (4)

K. J. Vahala, Nature 424, 839 (2003).
[CrossRef]

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, IEEE Photon. Technol. Lett. 15, 36 (2003).
[CrossRef]

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, J. Lightwave Technol. 21, 2997 (2003).
[CrossRef]

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, IEEE J. Sel. Top. Quantum Electron. 9, 1355 (2003).
[CrossRef]

2002 (2)

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

T. A. Ibrahim, V. Van, and P.-T. Ho, Opt. Lett. 27, 803 (2002).
[CrossRef]

1999 (1)

B. Gayral, J. M. Gérard, A. Lemaîitre, C. Dupuis, L. Manin, and J. L. Pelouard, Appl. Phys. Lett. 75, 1908 (1999).
[CrossRef]

1990 (2)

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, IEEE J. Quantum Electron. 26, 113 (1990).
[CrossRef]

H. C. Huang, S. Yee, and M. Soma, J. Appl. Phys. 67, 1497 (1990).
[CrossRef]

1980 (1)

J. G. Mendoza-Alvarez, F. D. Nunes, and N. B. Patel, J. Appl. Phys. 51, 4365 (1980).
[CrossRef]

Absil, P. P.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

Alamo, J. A. D.

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, IEEE J. Quantum Electron. 26, 113 (1990).
[CrossRef]

Almeida, V. R.

Baba, T.

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, IEEE J. Sel. Top. Quantum Electron. 9, 1355 (2003).
[CrossRef]

Barrios, C. A.

Bennett, B. R.

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, IEEE J. Quantum Electron. 26, 113 (1990).
[CrossRef]

Bolten, J.

Borselli, M.

Cao, W.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, IEEE Photon. Technol. Lett. 15, 36 (2003).
[CrossRef]

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, J. Lightwave Technol. 21, 2997 (2003).
[CrossRef]

Cheng, C. Y.

Chien, H. C.

Dupuis, C.

B. Gayral, J. M. Gérard, A. Lemaîitre, C. Dupuis, L. Manin, and J. L. Pelouard, Appl. Phys. Lett. 75, 1908 (1999).
[CrossRef]

Först, M.

Foster, M. A.

Gaeta, A. L.

Gayral, B.

B. Gayral, J. M. Gérard, A. Lemaîitre, C. Dupuis, L. Manin, and J. L. Pelouard, Appl. Phys. Lett. 75, 1908 (1999).
[CrossRef]

Gérard, J. M.

B. Gayral, J. M. Gérard, A. Lemaîitre, C. Dupuis, L. Manin, and J. L. Pelouard, Appl. Phys. Lett. 75, 1908 (1999).
[CrossRef]

Goldhar, J.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, J. Lightwave Technol. 21, 2997 (2003).
[CrossRef]

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, IEEE Photon. Technol. Lett. 15, 36 (2003).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

Gottheil, M.

Grover, R.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

Ho, P.-T.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, IEEE Photon. Technol. Lett. 15, 36 (2003).
[CrossRef]

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, J. Lightwave Technol. 21, 2997 (2003).
[CrossRef]

T. A. Ibrahim, V. Van, and P.-T. Ho, Opt. Lett. 27, 803 (2002).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

Hong, J. Z.

Huang, H. C.

H. C. Huang, S. Yee, and M. Soma, J. Appl. Phys. 67, 1497 (1990).
[CrossRef]

Ibrahim, T. A.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, IEEE Photon. Technol. Lett. 15, 36 (2003).
[CrossRef]

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, J. Lightwave Technol. 21, 2997 (2003).
[CrossRef]

T. A. Ibrahim, V. Van, and P.-T. Ho, Opt. Lett. 27, 803 (2002).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

Johnson, F. G.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

Johnson, T. J.

Kim, Y.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, IEEE Photon. Technol. Lett. 15, 36 (2003).
[CrossRef]

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, J. Lightwave Technol. 21, 2997 (2003).
[CrossRef]

Kurz, H.

Lee, C. H.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, J. Lightwave Technol. 21, 2997 (2003).
[CrossRef]

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, IEEE Photon. Technol. Lett. 15, 36 (2003).
[CrossRef]

Lemaîitre, A.

B. Gayral, J. M. Gérard, A. Lemaîitre, C. Dupuis, L. Manin, and J. L. Pelouard, Appl. Phys. Lett. 75, 1908 (1999).
[CrossRef]

Li, J.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, IEEE Photon. Technol. Lett. 15, 36 (2003).
[CrossRef]

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, J. Lightwave Technol. 21, 2997 (2003).
[CrossRef]

Lipson, M.

Manin, L.

B. Gayral, J. M. Gérard, A. Lemaîitre, C. Dupuis, L. Manin, and J. L. Pelouard, Appl. Phys. Lett. 75, 1908 (1999).
[CrossRef]

Mao, M.-H.

Mendoza-Alvarez, J. G.

J. G. Mendoza-Alvarez, F. D. Nunes, and N. B. Patel, J. Appl. Phys. 51, 4365 (1980).
[CrossRef]

Moormann, C.

Nakagawa, A.

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, IEEE J. Sel. Top. Quantum Electron. 9, 1355 (2003).
[CrossRef]

Niehusmann, J.

Nozaki, K.

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, IEEE J. Sel. Top. Quantum Electron. 9, 1355 (2003).
[CrossRef]

Nunes, F. D.

J. G. Mendoza-Alvarez, F. D. Nunes, and N. B. Patel, J. Appl. Phys. 51, 4365 (1980).
[CrossRef]

Ouzounov, D. G.

Painter, O.

Panepucci, R. R.

Patel, N. B.

J. G. Mendoza-Alvarez, F. D. Nunes, and N. B. Patel, J. Appl. Phys. 51, 4365 (1980).
[CrossRef]

Pelouard, J. L.

B. Gayral, J. M. Gérard, A. Lemaîitre, C. Dupuis, L. Manin, and J. L. Pelouard, Appl. Phys. Lett. 75, 1908 (1999).
[CrossRef]

Plötzing, T.

Ritter, K.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

Sano, D.

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, IEEE J. Sel. Top. Quantum Electron. 9, 1355 (2003).
[CrossRef]

Soma, M.

H. C. Huang, S. Yee, and M. Soma, J. Appl. Phys. 67, 1497 (1990).
[CrossRef]

Soref, R. A.

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, IEEE J. Quantum Electron. 26, 113 (1990).
[CrossRef]

Vahala, K. J.

K. J. Vahala, Nature 424, 839 (2003).
[CrossRef]

Van, V.

T. A. Ibrahim, V. Van, and P.-T. Ho, Opt. Lett. 27, 803 (2002).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

Verdeyen, J. T.

J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice-Hall, 1995).

Wahlbrink, T.

Waldow, M.

Yee, S.

H. C. Huang, S. Yee, and M. Soma, J. Appl. Phys. 67, 1497 (1990).
[CrossRef]

Appl. Phys. Lett. (1)

B. Gayral, J. M. Gérard, A. Lemaîitre, C. Dupuis, L. Manin, and J. L. Pelouard, Appl. Phys. Lett. 75, 1908 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, IEEE J. Quantum Electron. 26, 113 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, IEEE J. Sel. Top. Quantum Electron. 9, 1355 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, IEEE Photon. Technol. Lett. 14, 74 (2002).
[CrossRef]

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, IEEE Photon. Technol. Lett. 15, 36 (2003).
[CrossRef]

J. Appl. Phys. (2)

H. C. Huang, S. Yee, and M. Soma, J. Appl. Phys. 67, 1497 (1990).
[CrossRef]

J. G. Mendoza-Alvarez, F. D. Nunes, and N. B. Patel, J. Appl. Phys. 51, 4365 (1980).
[CrossRef]

J. Lightwave Technol. (1)

Nature (2)

K. J. Vahala, Nature 424, 839 (2003).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Other (1)

J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice-Hall, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Scanning electron microscope image of the fully processed microdisk cavity with a diameter of 10 μm.

Fig. 2.
Fig. 2.

Schematic diagram of the tapered-fiber pump–probe setup for time-resolved measurements of the microdisk cavities. DPSSL, diode-pumped solid-state laser; OPO, optical parametric oscillator; OSA, optical spectrum analyzer; BS, beam splitter. The inset shows the schematic illustration of a tapered fiber coupled to the microdisk resonator.

Fig. 3.
Fig. 3.

Transmission spectrum of a microdisk resonator in the absence of optical pumping.

Fig. 4.
Fig. 4.

Time-resolved spectral response of the GaAs microdisk resonator under the femtosecond pulse excitation. The zero time delay point is arbitrarily chosen. The color scale represents the transmission through the tapered fiber coupled with the microdisk resonator. The spectral response of the microdisk is rapidly modulated by photon injection and subsequent recombination of carriers.

Fig. 5.
Fig. 5.

Temporal evolution of the wavelength shift of the resonant mode for the GaAs microdisk resonator under the femtosecond pulse excitation. The wavelength shift refers to the resonant mode shift relative to the mode wavelength without pumping (i.e., 1319.45 nm). The wavelength shift is obtained by tracking the dip in Fig. 4. The red line represents an exponential fit to the experimental data, and the fitted time constant is 42 ps. The inset shows an exponential fit to the onset of the wavelength shift with the fitted time constant 4.6 ps.

Fig. 6.
Fig. 6.

Switching dynamics at wavelengths of (a) 1319.45 nm and (b) 1318.36 nm. Switch-on and switch-off operations were demonstrated, and all had a depth of modulation more than 10 dB.

Fig. 7.
Fig. 7.

Schematic illustration of the switching dynamics. (a) Determination of the switching times for the switch-on and switch-off operations from the temporal evolution of the wavelength shift. λ1 is the maximum wavelength shift under the femtosecond pulse excitation, and λ2 is the resonant wavelength in the absence of the optical pumping. Δton and Δtoff are the switching times for the switch-on and switch-off operations, respectively. (b) Transmission spectrum in the absence of optical pumping. (c) Transmission spectrum when the resonant mode has the maximum wavelength shift.

Metrics