Abstract

We report on the experimental and theoretical investigations of enhancing the optical absorption of organic molecules in the weak plasmon–exciton coupling regime. A metal–organic hybrid structure consisting of dye molecules embedded in the polymer matrix is placed in close vicinity to thin metal films. We have observed a transition from a weak coupling regime to a strong coupling one as the thickness of the metal layer increases. The results indicate that absorption of the self-assembled J-aggregate nanostructures can be increased in the weak plasmon–exciton coupling regime and strongly quenched in the strong coupling regime. A theoretical model based on the transfer-matrix method qualitatively confirms the experimental results obtained from polarization-dependent spectroscopic reflection measurements.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra hybrid plasmonics: strong coupling of plexcitons with plasmon polaritons

Sinan Balci and Coskun Kocabas
Opt. Lett. 40(14) 3424-3427 (2015)

Strong coupling of surface plasmon polaritons and ensembles of dye molecules

T. U. Tumkur, G. Zhu, and M. A. Noginov
Opt. Express 24(4) 3921-3928 (2016)

Luminescence enhancement in nanocomposite consisting of polyvinyl alcohol incorporated gold nanoparticles and Nile blue 690 perchlorate

Ketevan Chubinidze, Besarion Partsvania, Tamaz Sulaberidze, Aleksandre Khuskivadze, Elene Davitashvili, and Nana Koshoridze
Appl. Opt. 53(31) 7177-7181 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription