Abstract

We propose a novel photonic downconversion method based on optical carrier reusing. In the proposed system, the phase modulator (PM) is placed between two narrowband fiber Bragg gratings (FBGs), which are designed to reflect the optical carrier and transmit the optical sidebands. The optical carrier is modulated in the PM in two directions and is not injected into the photodetector (PD). Thus, the utilization ratio of the optical carrier is enhanced and the power saturation in the PD is avoided. Consequently, the system gain can be improved. In addition, a 2×2 optical coupler is cooperated with a balanced PD behind these two FBGs. Resulting from the subtle design of the phase difference, gain is furthermore doubled and intensity noise can be reduced simultaneously. In the experiments, 29 dB gain improvement is measured compared with the traditional dual-series intensity modulators method. The noise floor is reduced by 12.1 dB.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
    [CrossRef]
  2. Y. Li and P. Herczfeld, J. Lightwave Technol. 27, 1086 (2009).
    [CrossRef]
  3. M. Y. Frankel and R. D. Esman, J. Lightwave Technol. 16, 859 (1998).
    [CrossRef]
  4. V. R. Pagán, B. M. Haas, and T. E. Murphy, Opt. Express 19, 883 (2011).
    [CrossRef]
  5. G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, IEEE Trans. Microwave Theor. Tech. 43, 2318 (1995).
    [CrossRef]
  6. M. M. Howerton, R. P. Moeller, G. K. Gopalakrishnan, and W. K. Burns, IEEE Photon. Technol. Lett. 8, 1692 (1996).
    [CrossRef]
  7. E. H. W. Chan and R. A. Minasian, J. Lightwave Technol. 30, 3580 (2012).
    [CrossRef]
  8. X. S. Yao, IEEE Photon. Technol. Lett. 10, 264 (1998).
    [CrossRef]
  9. E. H. W. Chan and R. A. Minasian, IEEE J. Sel. Top. Quantum Electron. 19, 211 (2013).
    [CrossRef]
  10. B. M. Haas and T. E. Murphy, 2009 International Topical Meeting on Microwave Photonics, (Valencia, 2009).
  11. W. R. Leeb, A. L. Scholtz, and E. Bonek, IEEE J. Quantum Electron. 18, 14 (1982).
    [CrossRef]
  12. J. McKinney, M. Godinez, V. Urick, S. Thaniyavarn, W. Charczenko, and K. Williams, IEEE Photon. Technol. Lett. 19, 465 (2007).
    [CrossRef]
  13. T. Kawanishi, T. Sakamoto, S. Shinada, and M. Izutsu, IEEE Trans. Microwave Theor. Tech. 14, 566 (2004).

2013

E. H. W. Chan and R. A. Minasian, IEEE J. Sel. Top. Quantum Electron. 19, 211 (2013).
[CrossRef]

2012

2011

2009

2007

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

J. McKinney, M. Godinez, V. Urick, S. Thaniyavarn, W. Charczenko, and K. Williams, IEEE Photon. Technol. Lett. 19, 465 (2007).
[CrossRef]

2004

T. Kawanishi, T. Sakamoto, S. Shinada, and M. Izutsu, IEEE Trans. Microwave Theor. Tech. 14, 566 (2004).

1998

1996

M. M. Howerton, R. P. Moeller, G. K. Gopalakrishnan, and W. K. Burns, IEEE Photon. Technol. Lett. 8, 1692 (1996).
[CrossRef]

1995

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, IEEE Trans. Microwave Theor. Tech. 43, 2318 (1995).
[CrossRef]

1982

W. R. Leeb, A. L. Scholtz, and E. Bonek, IEEE J. Quantum Electron. 18, 14 (1982).
[CrossRef]

Bonek, E.

W. R. Leeb, A. L. Scholtz, and E. Bonek, IEEE J. Quantum Electron. 18, 14 (1982).
[CrossRef]

Burns, W. K.

M. M. Howerton, R. P. Moeller, G. K. Gopalakrishnan, and W. K. Burns, IEEE Photon. Technol. Lett. 8, 1692 (1996).
[CrossRef]

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, IEEE Trans. Microwave Theor. Tech. 43, 2318 (1995).
[CrossRef]

Capmany, J.

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

Chan, E. H. W.

E. H. W. Chan and R. A. Minasian, IEEE J. Sel. Top. Quantum Electron. 19, 211 (2013).
[CrossRef]

E. H. W. Chan and R. A. Minasian, J. Lightwave Technol. 30, 3580 (2012).
[CrossRef]

Charczenko, W.

J. McKinney, M. Godinez, V. Urick, S. Thaniyavarn, W. Charczenko, and K. Williams, IEEE Photon. Technol. Lett. 19, 465 (2007).
[CrossRef]

Esman, R. D.

M. Y. Frankel and R. D. Esman, J. Lightwave Technol. 16, 859 (1998).
[CrossRef]

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, IEEE Trans. Microwave Theor. Tech. 43, 2318 (1995).
[CrossRef]

Frankel, M. Y.

Godinez, M.

J. McKinney, M. Godinez, V. Urick, S. Thaniyavarn, W. Charczenko, and K. Williams, IEEE Photon. Technol. Lett. 19, 465 (2007).
[CrossRef]

Gopalakrishnan, G. K.

M. M. Howerton, R. P. Moeller, G. K. Gopalakrishnan, and W. K. Burns, IEEE Photon. Technol. Lett. 8, 1692 (1996).
[CrossRef]

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, IEEE Trans. Microwave Theor. Tech. 43, 2318 (1995).
[CrossRef]

Haas, B. M.

V. R. Pagán, B. M. Haas, and T. E. Murphy, Opt. Express 19, 883 (2011).
[CrossRef]

B. M. Haas and T. E. Murphy, 2009 International Topical Meeting on Microwave Photonics, (Valencia, 2009).

Herczfeld, P.

Howerton, M. M.

M. M. Howerton, R. P. Moeller, G. K. Gopalakrishnan, and W. K. Burns, IEEE Photon. Technol. Lett. 8, 1692 (1996).
[CrossRef]

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, IEEE Trans. Microwave Theor. Tech. 43, 2318 (1995).
[CrossRef]

Izutsu, M.

T. Kawanishi, T. Sakamoto, S. Shinada, and M. Izutsu, IEEE Trans. Microwave Theor. Tech. 14, 566 (2004).

Kawanishi, T.

T. Kawanishi, T. Sakamoto, S. Shinada, and M. Izutsu, IEEE Trans. Microwave Theor. Tech. 14, 566 (2004).

Leeb, W. R.

W. R. Leeb, A. L. Scholtz, and E. Bonek, IEEE J. Quantum Electron. 18, 14 (1982).
[CrossRef]

Li, Y.

McKinney, J.

J. McKinney, M. Godinez, V. Urick, S. Thaniyavarn, W. Charczenko, and K. Williams, IEEE Photon. Technol. Lett. 19, 465 (2007).
[CrossRef]

Minasian, R. A.

E. H. W. Chan and R. A. Minasian, IEEE J. Sel. Top. Quantum Electron. 19, 211 (2013).
[CrossRef]

E. H. W. Chan and R. A. Minasian, J. Lightwave Technol. 30, 3580 (2012).
[CrossRef]

Moeller, R. P.

M. M. Howerton, R. P. Moeller, G. K. Gopalakrishnan, and W. K. Burns, IEEE Photon. Technol. Lett. 8, 1692 (1996).
[CrossRef]

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, IEEE Trans. Microwave Theor. Tech. 43, 2318 (1995).
[CrossRef]

Murphy, T. E.

V. R. Pagán, B. M. Haas, and T. E. Murphy, Opt. Express 19, 883 (2011).
[CrossRef]

B. M. Haas and T. E. Murphy, 2009 International Topical Meeting on Microwave Photonics, (Valencia, 2009).

Novak, D.

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

Pagán, V. R.

Sakamoto, T.

T. Kawanishi, T. Sakamoto, S. Shinada, and M. Izutsu, IEEE Trans. Microwave Theor. Tech. 14, 566 (2004).

Scholtz, A. L.

W. R. Leeb, A. L. Scholtz, and E. Bonek, IEEE J. Quantum Electron. 18, 14 (1982).
[CrossRef]

Shinada, S.

T. Kawanishi, T. Sakamoto, S. Shinada, and M. Izutsu, IEEE Trans. Microwave Theor. Tech. 14, 566 (2004).

Thaniyavarn, S.

J. McKinney, M. Godinez, V. Urick, S. Thaniyavarn, W. Charczenko, and K. Williams, IEEE Photon. Technol. Lett. 19, 465 (2007).
[CrossRef]

Urick, V.

J. McKinney, M. Godinez, V. Urick, S. Thaniyavarn, W. Charczenko, and K. Williams, IEEE Photon. Technol. Lett. 19, 465 (2007).
[CrossRef]

Williams, K.

J. McKinney, M. Godinez, V. Urick, S. Thaniyavarn, W. Charczenko, and K. Williams, IEEE Photon. Technol. Lett. 19, 465 (2007).
[CrossRef]

Williams, K. J.

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, IEEE Trans. Microwave Theor. Tech. 43, 2318 (1995).
[CrossRef]

Yao, X. S.

X. S. Yao, IEEE Photon. Technol. Lett. 10, 264 (1998).
[CrossRef]

IEEE J. Quantum Electron.

W. R. Leeb, A. L. Scholtz, and E. Bonek, IEEE J. Quantum Electron. 18, 14 (1982).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

E. H. W. Chan and R. A. Minasian, IEEE J. Sel. Top. Quantum Electron. 19, 211 (2013).
[CrossRef]

IEEE Photon. Technol. Lett.

M. M. Howerton, R. P. Moeller, G. K. Gopalakrishnan, and W. K. Burns, IEEE Photon. Technol. Lett. 8, 1692 (1996).
[CrossRef]

J. McKinney, M. Godinez, V. Urick, S. Thaniyavarn, W. Charczenko, and K. Williams, IEEE Photon. Technol. Lett. 19, 465 (2007).
[CrossRef]

X. S. Yao, IEEE Photon. Technol. Lett. 10, 264 (1998).
[CrossRef]

IEEE Trans. Microwave Theor. Tech.

T. Kawanishi, T. Sakamoto, S. Shinada, and M. Izutsu, IEEE Trans. Microwave Theor. Tech. 14, 566 (2004).

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, IEEE Trans. Microwave Theor. Tech. 43, 2318 (1995).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

Opt. Express

Other

B. M. Haas and T. E. Murphy, 2009 International Topical Meeting on Microwave Photonics, (Valencia, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Diagram of the downconversion system presented here. ESA, electronic spectrum analyzer. Φ is the phase of light wave. ΔΦ is the phase difference of sidebands between LO and RF frequency. Black dotted lines represent the transmitted spectrum of FBGs.

Fig. 2.
Fig. 2.

Simulation analysis of the proposed system. (a) Output power as a function of LO modulation depth, (b) calculated and measured gain improvement versus the RF modulation depth, (c) electrical spectrum by two-tone test, and (d) dynamic range measurement.

Fig. 3.
Fig. 3.

Gain and noise performance in our method with resolution bandwidth (RBW)=1MHz.

Fig. 4.
Fig. 4.

Measured IF power versus the LO frequency.

Tables (1)

Tables Icon

Table 1. Comparison of Gain Improvement

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

u1(t)=PocejωotlJl(mL)ejlωLt,
u3(t)=Pocejωotl0Jl(mL)ejlωLt.
u2(t)=Pocej(ωot+π2)J0(mL)mJm(mR)ejmωRt.
u4(t)=Pocej(ωot+π2)J0(mL)m0Jm(mR)ejmωRt,
u5(t)=Poc2ej(ωot+π2)J0(mL)m0Jm(mR)emωRt+Poc2ej(ωot+π2)l0Jl(mL)ejlωLt,
u6(t)=Poc2ejωotJ0(mL)m0Jm(mR)ejmωRt+Poc2ej(ωot+π)l0Jl(mL)ejlωLt.
IIF(t)=2GARPocJo(mL)J1(mL)J1(mR)ejωIFt,
G=(2GARPocπVπ)2[Jo(mL)J1(mL)]2.
GMZ=(RPocπ2Vπ)2[J1(mL)]2.
GI=16GA2Jo(mL)2.
GA=[1J0(mL)J0(mR)]2.
GI=16[1J0(mL)J0(mR)]4Jo(mL)2.
IIF(t)=GARPoc[Jo(mL)J1(mL)mR18Jo(mL)J1(mL)mR3]ejωIFt.

Metrics