Abstract

When a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle interacts with a laser field, the plasmonic field of the metallic nanoparticle can be normalized by the quantum coherence generated in the quantum dot. In this Letter, we study the states of polarization of such a coherent-plasmonic field and demonstrate how these states can reveal unique aspects of the collective molecular properties of the hybrid system formed via coherent exciton–plasmon coupling. We show that transition between the molecular states of this system can lead to ultrafast polarization dynamics, including sudden reversal of the sense of variations of the plasmonic field and formation of circular and elliptical polarization.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, and C. Sönnichsen, Nano Lett. 8, 2345 (2008).
    [CrossRef]
  2. P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, Phys. Rev. B 80, 153409 (2009).
    [CrossRef]
  3. E. Öğüt and K. Şendur, Appl. Phys. Lett. 96, 141104 (2010).
    [CrossRef]
  4. J. Li, S. Chen, P. Yu, H. Cheng, X. Duan, and J. Tian, Opt. Express 21, 10342 (2013).
    [CrossRef]
  5. A. Roberts and L. Lin, Opt. Lett. 37, 1820 (2012).
    [CrossRef]
  6. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, Opt. Lett. 38, 513 (2013).
    [CrossRef]
  7. R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, Phys. Rev. B 83, 235406 (2011).
    [CrossRef]
  8. S. M. Sadeghi, Nanotechnology 20, 225401 (2009).
    [CrossRef]
  9. S. M. Sadeghi, Phys. Rev. B 79, 233309 (2009).
    [CrossRef]
  10. M.-T. Cheng, S.-D. Liu, H.-J. Hao, and Q.-Q. Wang, Opt. Lett. 32, 2125 (2007).
    [CrossRef]
  11. M.-T. Cheng, S.-D. Liu, and Q.-Q. Wang, Appl. Phys. Lett. 92, 162107 (2008).
    [CrossRef]
  12. J. D. Cox, M. R. Singh, C. von Bilderling, and A. V. Bragas, Adv. Opt. Mater. 1, 460 (2013).
  13. M. R. Singh, Nanotechnology 24, 125701 (2013).
    [CrossRef]
  14. R. D. Artuso and G. W. Bryant, Nano Lett. 8, 2106 (2008).
    [CrossRef]
  15. A. V. Malyshev and V. A. Malyshev, Phys. Rev. B 84, 035314 (2011).
    [CrossRef]
  16. J.-B. Li, N.-C. Kim, M.-T. Cheng, L. Zhou, Z.-H. Hao, and Q.-Q. Wang, Opt. Express 20, 1856 (2012).
    [CrossRef]
  17. E. Paspalakis, S. Evangelou, S. G. Kosionis, and A. F. Terzis, J. Appl. Phys. 115, 083106 (2014).
    [CrossRef]
  18. S. G. Kosionis, A. F. Terzis, V. Yannopapas, and E. Paspalakis, J. Phys. Chem. C 116, 23663 (2012).
    [CrossRef]
  19. A. O. Govorov and I. Carmeli, Nano Lett. 7, 620 (2007).
    [CrossRef]
  20. T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002).
    [CrossRef]
  21. S. M. Sadeghi, Appl. Phys. Lett. 101, 213102 (2012).
    [CrossRef]
  22. O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, Appl. Phys. Lett. 100, 061114 (2012).
    [CrossRef]
  23. S. M. Sadeghi, Phys. Rev. B 82, 035413 (2010).
    [CrossRef]

2014 (1)

E. Paspalakis, S. Evangelou, S. G. Kosionis, and A. F. Terzis, J. Appl. Phys. 115, 083106 (2014).
[CrossRef]

2013 (4)

J. D. Cox, M. R. Singh, C. von Bilderling, and A. V. Bragas, Adv. Opt. Mater. 1, 460 (2013).

M. R. Singh, Nanotechnology 24, 125701 (2013).
[CrossRef]

J. Li, S. Chen, P. Yu, H. Cheng, X. Duan, and J. Tian, Opt. Express 21, 10342 (2013).
[CrossRef]

A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, Opt. Lett. 38, 513 (2013).
[CrossRef]

2012 (5)

A. Roberts and L. Lin, Opt. Lett. 37, 1820 (2012).
[CrossRef]

S. G. Kosionis, A. F. Terzis, V. Yannopapas, and E. Paspalakis, J. Phys. Chem. C 116, 23663 (2012).
[CrossRef]

J.-B. Li, N.-C. Kim, M.-T. Cheng, L. Zhou, Z.-H. Hao, and Q.-Q. Wang, Opt. Express 20, 1856 (2012).
[CrossRef]

S. M. Sadeghi, Appl. Phys. Lett. 101, 213102 (2012).
[CrossRef]

O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, Appl. Phys. Lett. 100, 061114 (2012).
[CrossRef]

2011 (2)

A. V. Malyshev and V. A. Malyshev, Phys. Rev. B 84, 035314 (2011).
[CrossRef]

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, Phys. Rev. B 83, 235406 (2011).
[CrossRef]

2010 (2)

E. Öğüt and K. Şendur, Appl. Phys. Lett. 96, 141104 (2010).
[CrossRef]

S. M. Sadeghi, Phys. Rev. B 82, 035413 (2010).
[CrossRef]

2009 (3)

S. M. Sadeghi, Nanotechnology 20, 225401 (2009).
[CrossRef]

S. M. Sadeghi, Phys. Rev. B 79, 233309 (2009).
[CrossRef]

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, Phys. Rev. B 80, 153409 (2009).
[CrossRef]

2008 (3)

O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, and C. Sönnichsen, Nano Lett. 8, 2345 (2008).
[CrossRef]

M.-T. Cheng, S.-D. Liu, and Q.-Q. Wang, Appl. Phys. Lett. 92, 162107 (2008).
[CrossRef]

R. D. Artuso and G. W. Bryant, Nano Lett. 8, 2106 (2008).
[CrossRef]

2007 (2)

2002 (1)

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Aizpurua, J.

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, Phys. Rev. B 83, 235406 (2011).
[CrossRef]

Artuso, R. D.

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, Phys. Rev. B 83, 235406 (2011).
[CrossRef]

R. D. Artuso and G. W. Bryant, Nano Lett. 8, 2106 (2008).
[CrossRef]

Bacher, G.

O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, Appl. Phys. Lett. 100, 061114 (2012).
[CrossRef]

Becker, J.

O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, and C. Sönnichsen, Nano Lett. 8, 2345 (2008).
[CrossRef]

Biagioni, P.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, Phys. Rev. B 80, 153409 (2009).
[CrossRef]

Bozhevolnyi, S. I.

Bragas, A. V.

J. D. Cox, M. R. Singh, C. von Bilderling, and A. V. Bragas, Adv. Opt. Mater. 1, 460 (2013).

Bryant, G. W.

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, Phys. Rev. B 83, 235406 (2011).
[CrossRef]

R. D. Artuso and G. W. Bryant, Nano Lett. 8, 2106 (2008).
[CrossRef]

Carbone, L.

O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, and C. Sönnichsen, Nano Lett. 8, 2345 (2008).
[CrossRef]

Carmeli, I.

A. O. Govorov and I. Carmeli, Nano Lett. 7, 620 (2007).
[CrossRef]

Chen, S.

Cheng, H.

Cheng, M.-T.

Cox, J. D.

J. D. Cox, M. R. Singh, C. von Bilderling, and A. V. Bragas, Adv. Opt. Mater. 1, 460 (2013).

Duan, X.

Duò, L.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, Phys. Rev. B 80, 153409 (2009).
[CrossRef]

Evangelou, S.

E. Paspalakis, S. Evangelou, S. G. Kosionis, and A. F. Terzis, J. Appl. Phys. 115, 083106 (2014).
[CrossRef]

Fedorych, O.

O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, Appl. Phys. Lett. 100, 061114 (2012).
[CrossRef]

Finazzi, M.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, Phys. Rev. B 80, 153409 (2009).
[CrossRef]

Friberg, A. T.

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Garcia-Etxarri, A.

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, Phys. Rev. B 83, 235406 (2011).
[CrossRef]

Govorov, A. O.

A. O. Govorov and I. Carmeli, Nano Lett. 7, 620 (2007).
[CrossRef]

Hao, H.-J.

Hao, Z.-H.

Hecht, B.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, Phys. Rev. B 80, 153409 (2009).
[CrossRef]

Hommel, D.

O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, Appl. Phys. Lett. 100, 061114 (2012).
[CrossRef]

Huang, J.-S.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, Phys. Rev. B 80, 153409 (2009).
[CrossRef]

Kaivola, M.

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Khalavka, Y.

O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, and C. Sönnichsen, Nano Lett. 8, 2345 (2008).
[CrossRef]

Kim, N.-C.

Kosionis, S. G.

E. Paspalakis, S. Evangelou, S. G. Kosionis, and A. F. Terzis, J. Appl. Phys. 115, 083106 (2014).
[CrossRef]

S. G. Kosionis, A. F. Terzis, V. Yannopapas, and E. Paspalakis, J. Phys. Chem. C 116, 23663 (2012).
[CrossRef]

Kruse, C.

O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, Appl. Phys. Lett. 100, 061114 (2012).
[CrossRef]

Kümmell, T.

O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, Appl. Phys. Lett. 100, 061114 (2012).
[CrossRef]

Li, J.

Li, J.-B.

Lin, L.

Liu, S.-D.

M.-T. Cheng, S.-D. Liu, and Q.-Q. Wang, Appl. Phys. Lett. 92, 162107 (2008).
[CrossRef]

M.-T. Cheng, S.-D. Liu, H.-J. Hao, and Q.-Q. Wang, Opt. Lett. 32, 2125 (2007).
[CrossRef]

Malyshev, A. V.

A. V. Malyshev and V. A. Malyshev, Phys. Rev. B 84, 035314 (2011).
[CrossRef]

Malyshev, V. A.

A. V. Malyshev and V. A. Malyshev, Phys. Rev. B 84, 035314 (2011).
[CrossRef]

Nielsen, M. G.

Ögüt, E.

E. Öğüt and K. Şendur, Appl. Phys. Lett. 96, 141104 (2010).
[CrossRef]

Paspalakis, E.

E. Paspalakis, S. Evangelou, S. G. Kosionis, and A. F. Terzis, J. Appl. Phys. 115, 083106 (2014).
[CrossRef]

S. G. Kosionis, A. F. Terzis, V. Yannopapas, and E. Paspalakis, J. Phys. Chem. C 116, 23663 (2012).
[CrossRef]

Pors, A.

Provalska, T.

O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, and C. Sönnichsen, Nano Lett. 8, 2345 (2008).
[CrossRef]

Roberts, A.

Ruban, A.

O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, Appl. Phys. Lett. 100, 061114 (2012).
[CrossRef]

Sadeghi, S. M.

S. M. Sadeghi, Appl. Phys. Lett. 101, 213102 (2012).
[CrossRef]

S. M. Sadeghi, Phys. Rev. B 82, 035413 (2010).
[CrossRef]

S. M. Sadeghi, Phys. Rev. B 79, 233309 (2009).
[CrossRef]

S. M. Sadeghi, Nanotechnology 20, 225401 (2009).
[CrossRef]

Savoini, M.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, Phys. Rev. B 80, 153409 (2009).
[CrossRef]

Schubert, O.

O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, and C. Sönnichsen, Nano Lett. 8, 2345 (2008).
[CrossRef]

Sendur, K.

E. Öğüt and K. Şendur, Appl. Phys. Lett. 96, 141104 (2010).
[CrossRef]

Setälä, T.

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Shevchenko, A.

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Singh, M. R.

J. D. Cox, M. R. Singh, C. von Bilderling, and A. V. Bragas, Adv. Opt. Mater. 1, 460 (2013).

M. R. Singh, Nanotechnology 24, 125701 (2013).
[CrossRef]

Sönnichsen, C.

O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, and C. Sönnichsen, Nano Lett. 8, 2345 (2008).
[CrossRef]

Terzis, A. F.

E. Paspalakis, S. Evangelou, S. G. Kosionis, and A. F. Terzis, J. Appl. Phys. 115, 083106 (2014).
[CrossRef]

S. G. Kosionis, A. F. Terzis, V. Yannopapas, and E. Paspalakis, J. Phys. Chem. C 116, 23663 (2012).
[CrossRef]

Tian, J.

von Bilderling, C.

J. D. Cox, M. R. Singh, C. von Bilderling, and A. V. Bragas, Adv. Opt. Mater. 1, 460 (2013).

Wang, Q.-Q.

Yannopapas, V.

S. G. Kosionis, A. F. Terzis, V. Yannopapas, and E. Paspalakis, J. Phys. Chem. C 116, 23663 (2012).
[CrossRef]

Yu, P.

Zhou, L.

Zins, I.

O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, and C. Sönnichsen, Nano Lett. 8, 2345 (2008).
[CrossRef]

Adv. Opt. Mater. (1)

J. D. Cox, M. R. Singh, C. von Bilderling, and A. V. Bragas, Adv. Opt. Mater. 1, 460 (2013).

Appl. Phys. Lett. (4)

M.-T. Cheng, S.-D. Liu, and Q.-Q. Wang, Appl. Phys. Lett. 92, 162107 (2008).
[CrossRef]

E. Öğüt and K. Şendur, Appl. Phys. Lett. 96, 141104 (2010).
[CrossRef]

S. M. Sadeghi, Appl. Phys. Lett. 101, 213102 (2012).
[CrossRef]

O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, Appl. Phys. Lett. 100, 061114 (2012).
[CrossRef]

J. Appl. Phys. (1)

E. Paspalakis, S. Evangelou, S. G. Kosionis, and A. F. Terzis, J. Appl. Phys. 115, 083106 (2014).
[CrossRef]

J. Phys. Chem. C (1)

S. G. Kosionis, A. F. Terzis, V. Yannopapas, and E. Paspalakis, J. Phys. Chem. C 116, 23663 (2012).
[CrossRef]

Nano Lett. (3)

A. O. Govorov and I. Carmeli, Nano Lett. 7, 620 (2007).
[CrossRef]

O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, and C. Sönnichsen, Nano Lett. 8, 2345 (2008).
[CrossRef]

R. D. Artuso and G. W. Bryant, Nano Lett. 8, 2106 (2008).
[CrossRef]

Nanotechnology (2)

S. M. Sadeghi, Nanotechnology 20, 225401 (2009).
[CrossRef]

M. R. Singh, Nanotechnology 24, 125701 (2013).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (5)

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, Phys. Rev. B 83, 235406 (2011).
[CrossRef]

S. M. Sadeghi, Phys. Rev. B 79, 233309 (2009).
[CrossRef]

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, Phys. Rev. B 80, 153409 (2009).
[CrossRef]

A. V. Malyshev and V. A. Malyshev, Phys. Rev. B 84, 035314 (2011).
[CrossRef]

S. M. Sadeghi, Phys. Rev. B 82, 035413 (2010).
[CrossRef]

Phys. Rev. E (1)

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic illustration of the QD-NS hybrid system. P(rNS,θ) and P(rNS,θ) are two points in the plane with the same distance from the center of the NS (rNS) but with opposite angles (θNS).

Fig. 2.
Fig. 2.

Variation of Ieff as a function of time for different rNS (numbers close to each curve in nm).

Fig. 3.
Fig. 3.

Variation of the real and imaginary parts of Ez ((a) and (b)) and Ey ((c) and (d)) as a function of time for rNS=8, 10, 12, and 15 nm (numbers close to the curves). All specifications are the same as those in Fig. 2.

Fig. 4.
Fig. 4.

Dynamics of polarization ellipse of the CP field at rNS=8 (a), 10 (b), 12 (c), and 15 nm (d). The letters close to each ellipse refer to the sampled times introduced in Fig. 2.

Fig. 5.
Fig. 5.

Dynamics of the phase difference between Ey and Ez for rNS=8, 10, 12, and 15 nm (numbers close to each curve).

Fig. 6.
Fig. 6.

Time evolution of the Stokes vector for different rNS (legends in nm) for the system studied in Fig. 2.

Fig. 7.
Fig. 7.

Dynamics of polarization ellipse for different θNS and rNS=8nm. All other specifications are the same as in Fig. 2.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ENSz=(13cos2(θNS))ENS(rNS),
ENSy=3sin(θNS)cos(θNS)ENS(rNS),
EQDz=(13cos2(θQD))EQD(rQD),
EQDy=3sin(θQD)cos(θQD)EQD(rQD).
βNS=R23[R13(εcεm)(ε0m+2εm)R23AB2R13A(εc+εm)+R23B(2ε0m+εm).
H(ρ)=j=1,2ωjσij+[Ω12r(ρ)σ21+H.C.],
ρ˙11=2Im[Ωeffρ21]+ΣF+Γ2ρ22Γ1ρ11,
ρ˙22=2Im[Ωeffρ21]ΣFΓ2ρ22,
ρ˙21=[iΔeff+Λeff]ρ21iΩeffδ.

Metrics