Abstract

A polarization-diversified photonic comb filter with tunable free spectrum range (FSR) is proposed using two variable differential group delay (DGD) elements in a loop configuration. Two different cosine transfer functions could be simultaneously realized on orthogonal polarization states. Experimental demonstrations also verify feasibilities in various reconfigurable transfer functions.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z.-C. Luo, W.-J. Cao, A.-P. Luo, and W.-C. Xu, J. Lightwave Technol. 30, 1857 (2012).
    [CrossRef]
  2. P. Xiang, X.-P. Zheng, H.-Y. Zhang, Y.-Q. Li, and Y.-F. Chen, Opt. Express 21, 631 (2013).
    [CrossRef]
  3. J.-Q. Li, K. Xu, S.-N. Fu, and M. Tang, IEEE Photon. Technol. Lett. 20, 1320 (2008).
    [CrossRef]
  4. Y.-W. Lee, H.-T. Kim, and Y. W. Lee, Opt. Express 16, 3871 (2008).
    [CrossRef]
  5. A.-P. Luo, Z.-C. Luo, W.-C. Xu, and H. Cui, Opt. Express 18, 6056 (2010).
    [CrossRef]
  6. Y.-F. Geng, X.-J. Li, X.-L. Tan, Y.-L. Deng, and Y.-Q. Yu, Opt. Express 21, 17352 (2013).
    [CrossRef]
  7. Y.-W. Lee and H.-T. Kim, Opt. Express 13, 1039 (2005).
    [CrossRef]
  8. H.-Y. Jiang and L.-S. Yan, Opt. Lett. 36, 2305 (2011).
    [CrossRef]
  9. C. Wang and J.-P. Yao, IEEE Trans. Micro. Theory Tech. 57, 496 (2009).
  10. S.-H. Cai, S.-L. Pan, D. Zhu, Z.-Z. Tang, P. Zhou, and X.-F. Chen, Opt. Commun. 285, 1140 (2012).
    [CrossRef]
  11. Y. M. Zhang and S. Pan, IEEE Photon. Technol. Lett. 25, 187 (2013).
    [CrossRef]
  12. M. I. Hayee, M. C. Cardakli, A. B. Sahin, and A. E. Willner, IEEE Photon. Technol. Lett. 13, 881 (2001).
    [CrossRef]
  13. T. Tanemura, Y. Takushima, and K. Kikuchi, Opt. Lett. 27, 1552 (2002).
    [CrossRef]
  14. L.-S. Yan, C. Yeh, G. Yang, L. Lin, Y. Q. Shi, A. E. Willner, and X. Yao, J. Lightwave Technol. 21, 1676 (2003).
    [CrossRef]

2013 (3)

2012 (2)

S.-H. Cai, S.-L. Pan, D. Zhu, Z.-Z. Tang, P. Zhou, and X.-F. Chen, Opt. Commun. 285, 1140 (2012).
[CrossRef]

Z.-C. Luo, W.-J. Cao, A.-P. Luo, and W.-C. Xu, J. Lightwave Technol. 30, 1857 (2012).
[CrossRef]

2011 (1)

2010 (1)

2009 (1)

C. Wang and J.-P. Yao, IEEE Trans. Micro. Theory Tech. 57, 496 (2009).

2008 (2)

J.-Q. Li, K. Xu, S.-N. Fu, and M. Tang, IEEE Photon. Technol. Lett. 20, 1320 (2008).
[CrossRef]

Y.-W. Lee, H.-T. Kim, and Y. W. Lee, Opt. Express 16, 3871 (2008).
[CrossRef]

2005 (1)

2003 (1)

2002 (1)

2001 (1)

M. I. Hayee, M. C. Cardakli, A. B. Sahin, and A. E. Willner, IEEE Photon. Technol. Lett. 13, 881 (2001).
[CrossRef]

Cai, S.-H.

S.-H. Cai, S.-L. Pan, D. Zhu, Z.-Z. Tang, P. Zhou, and X.-F. Chen, Opt. Commun. 285, 1140 (2012).
[CrossRef]

Cao, W.-J.

Cardakli, M. C.

M. I. Hayee, M. C. Cardakli, A. B. Sahin, and A. E. Willner, IEEE Photon. Technol. Lett. 13, 881 (2001).
[CrossRef]

Chen, X.-F.

S.-H. Cai, S.-L. Pan, D. Zhu, Z.-Z. Tang, P. Zhou, and X.-F. Chen, Opt. Commun. 285, 1140 (2012).
[CrossRef]

Chen, Y.-F.

Cui, H.

Deng, Y.-L.

Fu, S.-N.

J.-Q. Li, K. Xu, S.-N. Fu, and M. Tang, IEEE Photon. Technol. Lett. 20, 1320 (2008).
[CrossRef]

Geng, Y.-F.

Hayee, M. I.

M. I. Hayee, M. C. Cardakli, A. B. Sahin, and A. E. Willner, IEEE Photon. Technol. Lett. 13, 881 (2001).
[CrossRef]

Jiang, H.-Y.

Kikuchi, K.

Kim, H.-T.

Lee, Y. W.

Lee, Y.-W.

Li, J.-Q.

J.-Q. Li, K. Xu, S.-N. Fu, and M. Tang, IEEE Photon. Technol. Lett. 20, 1320 (2008).
[CrossRef]

Li, X.-J.

Li, Y.-Q.

Lin, L.

Luo, A.-P.

Luo, Z.-C.

Pan, S.

Y. M. Zhang and S. Pan, IEEE Photon. Technol. Lett. 25, 187 (2013).
[CrossRef]

Pan, S.-L.

S.-H. Cai, S.-L. Pan, D. Zhu, Z.-Z. Tang, P. Zhou, and X.-F. Chen, Opt. Commun. 285, 1140 (2012).
[CrossRef]

Sahin, A. B.

M. I. Hayee, M. C. Cardakli, A. B. Sahin, and A. E. Willner, IEEE Photon. Technol. Lett. 13, 881 (2001).
[CrossRef]

Shi, Y. Q.

Takushima, Y.

Tan, X.-L.

Tanemura, T.

Tang, M.

J.-Q. Li, K. Xu, S.-N. Fu, and M. Tang, IEEE Photon. Technol. Lett. 20, 1320 (2008).
[CrossRef]

Tang, Z.-Z.

S.-H. Cai, S.-L. Pan, D. Zhu, Z.-Z. Tang, P. Zhou, and X.-F. Chen, Opt. Commun. 285, 1140 (2012).
[CrossRef]

Wang, C.

C. Wang and J.-P. Yao, IEEE Trans. Micro. Theory Tech. 57, 496 (2009).

Willner, A. E.

L.-S. Yan, C. Yeh, G. Yang, L. Lin, Y. Q. Shi, A. E. Willner, and X. Yao, J. Lightwave Technol. 21, 1676 (2003).
[CrossRef]

M. I. Hayee, M. C. Cardakli, A. B. Sahin, and A. E. Willner, IEEE Photon. Technol. Lett. 13, 881 (2001).
[CrossRef]

Xiang, P.

Xu, K.

J.-Q. Li, K. Xu, S.-N. Fu, and M. Tang, IEEE Photon. Technol. Lett. 20, 1320 (2008).
[CrossRef]

Xu, W.-C.

Yan, L.-S.

Yang, G.

Yao, J.-P.

C. Wang and J.-P. Yao, IEEE Trans. Micro. Theory Tech. 57, 496 (2009).

Yao, X.

Yeh, C.

Yu, Y.-Q.

Zhang, H.-Y.

Zhang, Y. M.

Y. M. Zhang and S. Pan, IEEE Photon. Technol. Lett. 25, 187 (2013).
[CrossRef]

Zheng, X.-P.

Zhou, P.

S.-H. Cai, S.-L. Pan, D. Zhu, Z.-Z. Tang, P. Zhou, and X.-F. Chen, Opt. Commun. 285, 1140 (2012).
[CrossRef]

Zhu, D.

S.-H. Cai, S.-L. Pan, D. Zhu, Z.-Z. Tang, P. Zhou, and X.-F. Chen, Opt. Commun. 285, 1140 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J.-Q. Li, K. Xu, S.-N. Fu, and M. Tang, IEEE Photon. Technol. Lett. 20, 1320 (2008).
[CrossRef]

Y. M. Zhang and S. Pan, IEEE Photon. Technol. Lett. 25, 187 (2013).
[CrossRef]

M. I. Hayee, M. C. Cardakli, A. B. Sahin, and A. E. Willner, IEEE Photon. Technol. Lett. 13, 881 (2001).
[CrossRef]

IEEE Trans. Micro. Theory Tech. (1)

C. Wang and J.-P. Yao, IEEE Trans. Micro. Theory Tech. 57, 496 (2009).

J. Lightwave Technol. (2)

Opt. Commun. (1)

S.-H. Cai, S.-L. Pan, D. Zhu, Z.-Z. Tang, P. Zhou, and X.-F. Chen, Opt. Commun. 285, 1140 (2012).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Conceptual diagram of proposed tunable PDCF, PBS, polarization beam splitter; VDGD, variable differential-group-delay module; IFR, inline Faraday rotator; T1,2 is the transfer function of horizontal and vertical polarization states, τ1,2 is the DGD value of VDGD1,2, respectively.

Fig. 2.
Fig. 2.

Propagating light path when the input light transmits through the output port.

Fig. 3.
Fig. 3.

Measured transfer functions of our proposed PDCF on vertical (upper) and horizontal (lower) polarization state: (a) τ1=6.73ps, τ2=32.28ps; (b) τ1=2ps, τ2=16.34ps; (c) τ1=8.17ps, τ2=8.17ps (solid line in black/dotted line in red, experimental/calculated results).

Fig. 4.
Fig. 4.

(a) Measured transfer function of the PDCF on two orthogonal polarization states (the solid/dotted line, horizontal/vertical polarization); (b) combined flat-top transfer function with different FSR values.

Fig. 5.
Fig. 5.

Measured FSR parameters on orthogonal polarization states versus the DGD value of VDGD2: H/V (3.6/10): horizontal/vertical polarization state (DGD value of VDGD1 is fixed to be 3.6/10 ps).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T1(λ)=cos2[πf(τ1+τ2)],
T2(λ)=cos2[πf|τ2τ1|].
Δλ1=λ2c(τ1+τ2),
Δλ2=λ2c|τ2τ1|,
T(f)=a2cos[2πf(τ1+τ2)]+b2cos[2πf|τ2τ1|]+a+b2.

Metrics