Abstract

The emerging technology of visible light communications (VLC) will provide a new modality of communication. This technology uses illumination lighting to carry information. We propose to add a smart capability to mitigate interferences from unwanted light sources. This is achieved by adaptively filtering interference light using a tunable filter to block interferences dynamically. In this Letter, we present an innovative concept for a tunable notch filter based on ferroelectric thin films embedded with noble metal nanoparticles. The adaptivity of the filter is achieved by controlling the external applied voltage. This voltage creates an electric field that changes the refractive index of the host film through the linear electro-optic effect. Moreover, the fundamental characteristics of the filter are determined by the layer’s parameters, such as film thickness, nanoparticles concentration and geometry, and the material of both the host thin film and nanoparticles. We study the tunability of lead zirconate titanate (PZT) embedded with Ag nanoparticles that reaches approximately 50 nm, between 530 and 590 nm. Moreover, we showed that a PZT notch filter embedded with Ag nanoshells has its stop band shifted to shorter wavelengths. These tunable filters can be used as mode selectors inside a laser resonator, spatial light filters for imaging and communication both for VLC and infrared communication.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Arnon, J. Barry, G. Karagiannidis, R. Schober, and M. Uysal, Advanced Optical Wireless Communication Systems (Cambridge University, 2012).
  2. S. Arnon, J. Lightwave Technol. 30, 3434 (2012).
    [CrossRef]
  3. M. Noshad and M. Brandt-Pearce, “Can visible light communications provide Gb/s service?” arXiv:1308.3217 (2013).
  4. E. Monteiro, J. Lightwave Technol. 32, 2053 (2014).
    [CrossRef]
  5. O. Aharon and I. Abdulhalim, Opt. Lett. 34, 2114 (2009).
    [CrossRef]
  6. A. Sneh and K. M. Johnson, J. Lightwave Technol. 14, 1067 (1996).
    [CrossRef]
  7. G. Adams, Final Report Naval Command, (Control and Ocean Surveillance Center, 1994).
  8. A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, Applications (Wiley, 2003).
  9. K. Lee and M. A. El-Sayed, J. Phys. Chem. B 110, 19220 (2006).
    [CrossRef]
  10. N. Le and Y. M. Jang, Int. J. Smart Home 6, 95 (2012).
  11. H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, IEEE Photon. Technol. Lett. 21, 1063 (2009).
    [CrossRef]
  12. Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, Opt. Express 21, 1203 (2013).
    [CrossRef]
  13. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nano Lett. 6, 827 (2006).
    [CrossRef]
  14. M. M. Miller and A. A. Lazarides, J. Phys. Chem. B 109, 21556 (2005).
    [CrossRef]
  15. E. Rosenkrantz and S. Arnon, IEEE Trans. Nanotechnol. 13, 222 (2014).
    [CrossRef]
  16. E. Defay, T. Lacrevaz, T. Vo, V. Sbrugnera, C. Bermond, M. Aid, and B. Flechet, Appl. Phys. Lett. 94, 052901 (2009).
    [CrossRef]
  17. P. Gräupner, J. Pommier, A. Cachard, and J. Coutaz, J. Appl. Phys. 71, 4136 (1992).
    [CrossRef]
  18. G. H. Haertling, Ferroelectrics 75, 25 (1987).
    [CrossRef]
  19. E. F. Schubert, “Refractive index and extinction coefficient of materials,” http://homepages.rpi.edu/~schubert/Educational-resources/Materials-Refractive-index-and-extinction-coefficient.pdf (2004).
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  21. B. J. Wiley, S. H. Im, Z. Li, J. McLellan, A. Siekkinen, and Y. Xia, J. Phys. Chem. B 110, 15666 (2006).
    [CrossRef]
  22. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 104, 10549 (2000).
    [CrossRef]
  23. L. Tang, P. Du, G. Han, W. Weng, G. Zhao, and G. Shen, Surf. Coat. Technol. 167, 177 (2003).
    [CrossRef]
  24. T. Kundu and D. Chakravorty, Appl. Phys. Lett. 67, 2732 (1995).
    [CrossRef]
  25. K. Hsieh, H. Chen, D. Wan, and J. Shieh, J. Phys. Chem. C 112, 11673 (2008).
    [CrossRef]

2014 (2)

E. Monteiro, J. Lightwave Technol. 32, 2053 (2014).
[CrossRef]

E. Rosenkrantz and S. Arnon, IEEE Trans. Nanotechnol. 13, 222 (2014).
[CrossRef]

2013 (1)

2012 (2)

N. Le and Y. M. Jang, Int. J. Smart Home 6, 95 (2012).

S. Arnon, J. Lightwave Technol. 30, 3434 (2012).
[CrossRef]

2009 (3)

O. Aharon and I. Abdulhalim, Opt. Lett. 34, 2114 (2009).
[CrossRef]

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, IEEE Photon. Technol. Lett. 21, 1063 (2009).
[CrossRef]

E. Defay, T. Lacrevaz, T. Vo, V. Sbrugnera, C. Bermond, M. Aid, and B. Flechet, Appl. Phys. Lett. 94, 052901 (2009).
[CrossRef]

2008 (1)

K. Hsieh, H. Chen, D. Wan, and J. Shieh, J. Phys. Chem. C 112, 11673 (2008).
[CrossRef]

2006 (3)

B. J. Wiley, S. H. Im, Z. Li, J. McLellan, A. Siekkinen, and Y. Xia, J. Phys. Chem. B 110, 15666 (2006).
[CrossRef]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nano Lett. 6, 827 (2006).
[CrossRef]

K. Lee and M. A. El-Sayed, J. Phys. Chem. B 110, 19220 (2006).
[CrossRef]

2005 (1)

M. M. Miller and A. A. Lazarides, J. Phys. Chem. B 109, 21556 (2005).
[CrossRef]

2003 (1)

L. Tang, P. Du, G. Han, W. Weng, G. Zhao, and G. Shen, Surf. Coat. Technol. 167, 177 (2003).
[CrossRef]

2000 (1)

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 104, 10549 (2000).
[CrossRef]

1996 (1)

A. Sneh and K. M. Johnson, J. Lightwave Technol. 14, 1067 (1996).
[CrossRef]

1995 (1)

T. Kundu and D. Chakravorty, Appl. Phys. Lett. 67, 2732 (1995).
[CrossRef]

1992 (1)

P. Gräupner, J. Pommier, A. Cachard, and J. Coutaz, J. Appl. Phys. 71, 4136 (1992).
[CrossRef]

1987 (1)

G. H. Haertling, Ferroelectrics 75, 25 (1987).
[CrossRef]

Abdulhalim, I.

Adams, G.

G. Adams, Final Report Naval Command, (Control and Ocean Surveillance Center, 1994).

Aharon, O.

Aid, M.

E. Defay, T. Lacrevaz, T. Vo, V. Sbrugnera, C. Bermond, M. Aid, and B. Flechet, Appl. Phys. Lett. 94, 052901 (2009).
[CrossRef]

Arnon, S.

E. Rosenkrantz and S. Arnon, IEEE Trans. Nanotechnol. 13, 222 (2014).
[CrossRef]

S. Arnon, J. Lightwave Technol. 30, 3434 (2012).
[CrossRef]

S. Arnon, J. Barry, G. Karagiannidis, R. Schober, and M. Uysal, Advanced Optical Wireless Communication Systems (Cambridge University, 2012).

Barry, J.

S. Arnon, J. Barry, G. Karagiannidis, R. Schober, and M. Uysal, Advanced Optical Wireless Communication Systems (Cambridge University, 2012).

Bermond, C.

E. Defay, T. Lacrevaz, T. Vo, V. Sbrugnera, C. Bermond, M. Aid, and B. Flechet, Appl. Phys. Lett. 94, 052901 (2009).
[CrossRef]

Brandl, D. W.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nano Lett. 6, 827 (2006).
[CrossRef]

Brandt-Pearce, M.

M. Noshad and M. Brandt-Pearce, “Can visible light communications provide Gb/s service?” arXiv:1308.3217 (2013).

Cachard, A.

P. Gräupner, J. Pommier, A. Cachard, and J. Coutaz, J. Appl. Phys. 71, 4136 (1992).
[CrossRef]

Chakravorty, D.

T. Kundu and D. Chakravorty, Appl. Phys. Lett. 67, 2732 (1995).
[CrossRef]

Chen, H.

K. Hsieh, H. Chen, D. Wan, and J. Shieh, J. Phys. Chem. C 112, 11673 (2008).
[CrossRef]

Chi, N.

Coutaz, J.

P. Gräupner, J. Pommier, A. Cachard, and J. Coutaz, J. Appl. Phys. 71, 4136 (1992).
[CrossRef]

Defay, E.

E. Defay, T. Lacrevaz, T. Vo, V. Sbrugnera, C. Bermond, M. Aid, and B. Flechet, Appl. Phys. Lett. 94, 052901 (2009).
[CrossRef]

Du, P.

L. Tang, P. Du, G. Han, W. Weng, G. Zhao, and G. Shen, Surf. Coat. Technol. 167, 177 (2003).
[CrossRef]

El-Sayed, M. A.

K. Lee and M. A. El-Sayed, J. Phys. Chem. B 110, 19220 (2006).
[CrossRef]

Faulkner, G.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, IEEE Photon. Technol. Lett. 21, 1063 (2009).
[CrossRef]

Flechet, B.

E. Defay, T. Lacrevaz, T. Vo, V. Sbrugnera, C. Bermond, M. Aid, and B. Flechet, Appl. Phys. Lett. 94, 052901 (2009).
[CrossRef]

Gräupner, P.

P. Gräupner, J. Pommier, A. Cachard, and J. Coutaz, J. Appl. Phys. 71, 4136 (1992).
[CrossRef]

Haertling, G. H.

G. H. Haertling, Ferroelectrics 75, 25 (1987).
[CrossRef]

Halas, N. J.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nano Lett. 6, 827 (2006).
[CrossRef]

Han, G.

L. Tang, P. Du, G. Han, W. Weng, G. Zhao, and G. Shen, Surf. Coat. Technol. 167, 177 (2003).
[CrossRef]

Haynes, C. L.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 104, 10549 (2000).
[CrossRef]

Herbert, J. M.

A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, Applications (Wiley, 2003).

Hsieh, K.

K. Hsieh, H. Chen, D. Wan, and J. Shieh, J. Phys. Chem. C 112, 11673 (2008).
[CrossRef]

Im, S. H.

B. J. Wiley, S. H. Im, Z. Li, J. McLellan, A. Siekkinen, and Y. Xia, J. Phys. Chem. B 110, 15666 (2006).
[CrossRef]

Jang, Y. M.

N. Le and Y. M. Jang, Int. J. Smart Home 6, 95 (2012).

Jensen, T. R.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 104, 10549 (2000).
[CrossRef]

Johnson, K. M.

A. Sneh and K. M. Johnson, J. Lightwave Technol. 14, 1067 (1996).
[CrossRef]

Jung, D.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, IEEE Photon. Technol. Lett. 21, 1063 (2009).
[CrossRef]

Karagiannidis, G.

S. Arnon, J. Barry, G. Karagiannidis, R. Schober, and M. Uysal, Advanced Optical Wireless Communication Systems (Cambridge University, 2012).

Kundu, T.

T. Kundu and D. Chakravorty, Appl. Phys. Lett. 67, 2732 (1995).
[CrossRef]

Lacrevaz, T.

E. Defay, T. Lacrevaz, T. Vo, V. Sbrugnera, C. Bermond, M. Aid, and B. Flechet, Appl. Phys. Lett. 94, 052901 (2009).
[CrossRef]

Lazarides, A. A.

M. M. Miller and A. A. Lazarides, J. Phys. Chem. B 109, 21556 (2005).
[CrossRef]

Le, F.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nano Lett. 6, 827 (2006).
[CrossRef]

Le, N.

N. Le and Y. M. Jang, Int. J. Smart Home 6, 95 (2012).

Le Minh, H.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, IEEE Photon. Technol. Lett. 21, 1063 (2009).
[CrossRef]

Lee, K.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, IEEE Photon. Technol. Lett. 21, 1063 (2009).
[CrossRef]

K. Lee and M. A. El-Sayed, J. Phys. Chem. B 110, 19220 (2006).
[CrossRef]

Li, Z.

B. J. Wiley, S. H. Im, Z. Li, J. McLellan, A. Siekkinen, and Y. Xia, J. Phys. Chem. B 110, 15666 (2006).
[CrossRef]

Malinsky, M. D.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 104, 10549 (2000).
[CrossRef]

McLellan, J.

B. J. Wiley, S. H. Im, Z. Li, J. McLellan, A. Siekkinen, and Y. Xia, J. Phys. Chem. B 110, 15666 (2006).
[CrossRef]

Miller, M. M.

M. M. Miller and A. A. Lazarides, J. Phys. Chem. B 109, 21556 (2005).
[CrossRef]

Monteiro, E.

Moulson, A. J.

A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, Applications (Wiley, 2003).

Nordlander, P.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nano Lett. 6, 827 (2006).
[CrossRef]

Noshad, M.

M. Noshad and M. Brandt-Pearce, “Can visible light communications provide Gb/s service?” arXiv:1308.3217 (2013).

O’Brien, D.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, IEEE Photon. Technol. Lett. 21, 1063 (2009).
[CrossRef]

Oh, Y.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, IEEE Photon. Technol. Lett. 21, 1063 (2009).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Pommier, J.

P. Gräupner, J. Pommier, A. Cachard, and J. Coutaz, J. Appl. Phys. 71, 4136 (1992).
[CrossRef]

Rosenkrantz, E.

E. Rosenkrantz and S. Arnon, IEEE Trans. Nanotechnol. 13, 222 (2014).
[CrossRef]

Sbrugnera, V.

E. Defay, T. Lacrevaz, T. Vo, V. Sbrugnera, C. Bermond, M. Aid, and B. Flechet, Appl. Phys. Lett. 94, 052901 (2009).
[CrossRef]

Schober, R.

S. Arnon, J. Barry, G. Karagiannidis, R. Schober, and M. Uysal, Advanced Optical Wireless Communication Systems (Cambridge University, 2012).

Shang, H.

Shen, G.

L. Tang, P. Du, G. Han, W. Weng, G. Zhao, and G. Shen, Surf. Coat. Technol. 167, 177 (2003).
[CrossRef]

Shieh, J.

K. Hsieh, H. Chen, D. Wan, and J. Shieh, J. Phys. Chem. C 112, 11673 (2008).
[CrossRef]

Siekkinen, A.

B. J. Wiley, S. H. Im, Z. Li, J. McLellan, A. Siekkinen, and Y. Xia, J. Phys. Chem. B 110, 15666 (2006).
[CrossRef]

Sneh, A.

A. Sneh and K. M. Johnson, J. Lightwave Technol. 14, 1067 (1996).
[CrossRef]

Tang, L.

L. Tang, P. Du, G. Han, W. Weng, G. Zhao, and G. Shen, Surf. Coat. Technol. 167, 177 (2003).
[CrossRef]

Uysal, M.

S. Arnon, J. Barry, G. Karagiannidis, R. Schober, and M. Uysal, Advanced Optical Wireless Communication Systems (Cambridge University, 2012).

Van Duyne, R. P.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 104, 10549 (2000).
[CrossRef]

Vo, T.

E. Defay, T. Lacrevaz, T. Vo, V. Sbrugnera, C. Bermond, M. Aid, and B. Flechet, Appl. Phys. Lett. 94, 052901 (2009).
[CrossRef]

Wan, D.

K. Hsieh, H. Chen, D. Wan, and J. Shieh, J. Phys. Chem. C 112, 11673 (2008).
[CrossRef]

Wang, H.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nano Lett. 6, 827 (2006).
[CrossRef]

Wang, Y.

Weng, W.

L. Tang, P. Du, G. Han, W. Weng, G. Zhao, and G. Shen, Surf. Coat. Technol. 167, 177 (2003).
[CrossRef]

Wiley, B. J.

B. J. Wiley, S. H. Im, Z. Li, J. McLellan, A. Siekkinen, and Y. Xia, J. Phys. Chem. B 110, 15666 (2006).
[CrossRef]

Won, E. T.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, IEEE Photon. Technol. Lett. 21, 1063 (2009).
[CrossRef]

Xia, Y.

B. J. Wiley, S. H. Im, Z. Li, J. McLellan, A. Siekkinen, and Y. Xia, J. Phys. Chem. B 110, 15666 (2006).
[CrossRef]

Yu, J.

Zeng, L.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, IEEE Photon. Technol. Lett. 21, 1063 (2009).
[CrossRef]

Zhao, G.

L. Tang, P. Du, G. Han, W. Weng, G. Zhao, and G. Shen, Surf. Coat. Technol. 167, 177 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

E. Defay, T. Lacrevaz, T. Vo, V. Sbrugnera, C. Bermond, M. Aid, and B. Flechet, Appl. Phys. Lett. 94, 052901 (2009).
[CrossRef]

T. Kundu and D. Chakravorty, Appl. Phys. Lett. 67, 2732 (1995).
[CrossRef]

Ferroelectrics (1)

G. H. Haertling, Ferroelectrics 75, 25 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, IEEE Photon. Technol. Lett. 21, 1063 (2009).
[CrossRef]

IEEE Trans. Nanotechnol. (1)

E. Rosenkrantz and S. Arnon, IEEE Trans. Nanotechnol. 13, 222 (2014).
[CrossRef]

Int. J. Smart Home (1)

N. Le and Y. M. Jang, Int. J. Smart Home 6, 95 (2012).

J. Appl. Phys. (1)

P. Gräupner, J. Pommier, A. Cachard, and J. Coutaz, J. Appl. Phys. 71, 4136 (1992).
[CrossRef]

J. Lightwave Technol. (3)

J. Phys. Chem. B (4)

K. Lee and M. A. El-Sayed, J. Phys. Chem. B 110, 19220 (2006).
[CrossRef]

M. M. Miller and A. A. Lazarides, J. Phys. Chem. B 109, 21556 (2005).
[CrossRef]

B. J. Wiley, S. H. Im, Z. Li, J. McLellan, A. Siekkinen, and Y. Xia, J. Phys. Chem. B 110, 15666 (2006).
[CrossRef]

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 104, 10549 (2000).
[CrossRef]

J. Phys. Chem. C (1)

K. Hsieh, H. Chen, D. Wan, and J. Shieh, J. Phys. Chem. C 112, 11673 (2008).
[CrossRef]

Nano Lett. (1)

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nano Lett. 6, 827 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Surf. Coat. Technol. (1)

L. Tang, P. Du, G. Han, W. Weng, G. Zhao, and G. Shen, Surf. Coat. Technol. 167, 177 (2003).
[CrossRef]

Other (6)

E. F. Schubert, “Refractive index and extinction coefficient of materials,” http://homepages.rpi.edu/~schubert/Educational-resources/Materials-Refractive-index-and-extinction-coefficient.pdf (2004).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

M. Noshad and M. Brandt-Pearce, “Can visible light communications provide Gb/s service?” arXiv:1308.3217 (2013).

S. Arnon, J. Barry, G. Karagiannidis, R. Schober, and M. Uysal, Advanced Optical Wireless Communication Systems (Cambridge University, 2012).

G. Adams, Final Report Naval Command, (Control and Ocean Surveillance Center, 1994).

A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, Applications (Wiley, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Tunable notch filter concept comprising of a ferroelectric thin film layer embedded with different nanoparticles, applied with a voltage. The left notch filter extincts the green band of the visible spectrum, while the filter on the right extincts the blue region of the spectrum.

Fig. 2.
Fig. 2.

Transmittance of a 300 nm thick PZT thin film embedded with 7 nm Ag nanoparticles, the particles’ volume concentration is 2%; 50V was applied in order to obtain a 25 nm shift.

Fig. 3.
Fig. 3.

Transmittance of a 300 nm thick PZT embedded with 7 nm Ag nanoparticles; +50V was applied in order to obtain a 25 nm shift. The particles’ volume concentration is 2%.

Fig. 4.
Fig. 4.

Transmittance of Ag nanoshells embedded in PZT thin film, with volume concentration of 0.5% and a film thickness of 300 nm; 50V was applied in order to obtain a 20 nm shift.

Tables (1)

Tables Icon

Table 1. VLC Wavelength Band Plan [1]

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

D=zN·Cext(V),
τ=P/P0=exp(D).
Δn=12n3rcE=12n3rcVz,

Metrics