Abstract

We demonstrate experimentally the modulation and switching of one light beam by a second beam using metamaterials constructed from arrays of plasmonic circuits. Each circuit consists of three gold nanorods that mix together two coherent but orthogonally polarized light beams leading to modulation by an interference effect. By adjusting the phase and the amplitude of one of the beams, the amplitude and spectral composition of the second beam is altered. The plasmonic circuits display an asymmetry that enables an angle-dependent modulation, which we demonstrate with a diffraction grating where the energy directed into two diffraction orders is controlled by a second light beam. This effect appears like an optically controlled blaze that we use to switch a light beam between two different directions.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Dani, Z. Ku, P. Upadhya, R. Prasankumar, S. Brueck, and A. Taylor, Nano Lett. 9, 3565 (2009).
    [CrossRef]
  2. D. Cho, W. Wu, E. Ponizovskaya, P. Chaturvedi, A. Bratkovsky, S. Wang, X. Zhang, F. Wang, and Y. Shen, Opt. Express 17, 17652 (2009).
    [CrossRef]
  3. A. Nikolaenko, D. A. Francesco, S. Boden, N. Papasimakis, P. Ashburn, D. F. Enzo, and N. Zheludev, Phys. Rev. Lett. 104, 153902 (2010).
    [CrossRef]
  4. M. Ren, B. Jia, J. Ou, E. Plum, J. Zhang, K. MacDonald, A. Nikolaenko, J. Xu, M. Gu, and N. Zheludev, Adv. Mater. 23, 5540 (2011).
    [CrossRef]
  5. B. Gholipour, J. Zhang, K. MacDonald, D. Hewak, and N. Zheludev, Adv. Mater. 25, 3050 (2013).
    [CrossRef]
  6. H. Wei, Z. Wang, X. Tian, M. Kall, and H. Xu, Nat. Commun. 2, 387 (2011).
    [CrossRef]
  7. Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, Nano Lett. 12, 5784 (2012).
    [CrossRef]
  8. J. Zhang, K. MacDonald, and N. Zheludev, Light Sci. Appl. 1, e18 (2012).
    [CrossRef]
  9. N. Engheta, A. Salandrino, and A. Alù, Phys. Rev. Lett. 95, 95504 (2005).
    [CrossRef]
  10. N. Engheta, Science 317, 1698 (2007).
    [CrossRef]
  11. T. Davis, K. Vernon, and D. Gómez, J. Appl. Phys. 106, 043502 (2009).
    [CrossRef]
  12. B. Abasahl, C. Santschi, and O. Martin, ACS Photon. 1, 403 (2014).
  13. F. Eftekhari, D. E. Gómez, and T. Davis, Opt. Lett. 39, 2994 (2014).
    [CrossRef]
  14. T. J. Davis, K. C. Vernon, and D. E. Gómez, Phys. Rev. B 79, 155423 (2009).
    [CrossRef]
  15. T. J. Davis, D. E. Gómez, and K. C. Vernon, Nano Lett. 10, 2618 (2010).
    [CrossRef]
  16. A. Zavalin, J. Shamir, C. Vikram, and H. Caulfield, Appl. Opt. 45, 360 (2006).
    [CrossRef]

2014 (2)

B. Abasahl, C. Santschi, and O. Martin, ACS Photon. 1, 403 (2014).

F. Eftekhari, D. E. Gómez, and T. Davis, Opt. Lett. 39, 2994 (2014).
[CrossRef]

2013 (1)

B. Gholipour, J. Zhang, K. MacDonald, D. Hewak, and N. Zheludev, Adv. Mater. 25, 3050 (2013).
[CrossRef]

2012 (2)

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, Nano Lett. 12, 5784 (2012).
[CrossRef]

J. Zhang, K. MacDonald, and N. Zheludev, Light Sci. Appl. 1, e18 (2012).
[CrossRef]

2011 (2)

H. Wei, Z. Wang, X. Tian, M. Kall, and H. Xu, Nat. Commun. 2, 387 (2011).
[CrossRef]

M. Ren, B. Jia, J. Ou, E. Plum, J. Zhang, K. MacDonald, A. Nikolaenko, J. Xu, M. Gu, and N. Zheludev, Adv. Mater. 23, 5540 (2011).
[CrossRef]

2010 (2)

A. Nikolaenko, D. A. Francesco, S. Boden, N. Papasimakis, P. Ashburn, D. F. Enzo, and N. Zheludev, Phys. Rev. Lett. 104, 153902 (2010).
[CrossRef]

T. J. Davis, D. E. Gómez, and K. C. Vernon, Nano Lett. 10, 2618 (2010).
[CrossRef]

2009 (4)

T. J. Davis, K. C. Vernon, and D. E. Gómez, Phys. Rev. B 79, 155423 (2009).
[CrossRef]

T. Davis, K. Vernon, and D. Gómez, J. Appl. Phys. 106, 043502 (2009).
[CrossRef]

K. Dani, Z. Ku, P. Upadhya, R. Prasankumar, S. Brueck, and A. Taylor, Nano Lett. 9, 3565 (2009).
[CrossRef]

D. Cho, W. Wu, E. Ponizovskaya, P. Chaturvedi, A. Bratkovsky, S. Wang, X. Zhang, F. Wang, and Y. Shen, Opt. Express 17, 17652 (2009).
[CrossRef]

2007 (1)

N. Engheta, Science 317, 1698 (2007).
[CrossRef]

2006 (1)

2005 (1)

N. Engheta, A. Salandrino, and A. Alù, Phys. Rev. Lett. 95, 95504 (2005).
[CrossRef]

Abasahl, B.

B. Abasahl, C. Santschi, and O. Martin, ACS Photon. 1, 403 (2014).

Alù, A.

N. Engheta, A. Salandrino, and A. Alù, Phys. Rev. Lett. 95, 95504 (2005).
[CrossRef]

Ashburn, P.

A. Nikolaenko, D. A. Francesco, S. Boden, N. Papasimakis, P. Ashburn, D. F. Enzo, and N. Zheludev, Phys. Rev. Lett. 104, 153902 (2010).
[CrossRef]

Boden, S.

A. Nikolaenko, D. A. Francesco, S. Boden, N. Papasimakis, P. Ashburn, D. F. Enzo, and N. Zheludev, Phys. Rev. Lett. 104, 153902 (2010).
[CrossRef]

Bratkovsky, A.

Brueck, S.

K. Dani, Z. Ku, P. Upadhya, R. Prasankumar, S. Brueck, and A. Taylor, Nano Lett. 9, 3565 (2009).
[CrossRef]

Caulfield, H.

Chaturvedi, P.

Cho, D.

Dani, K.

K. Dani, Z. Ku, P. Upadhya, R. Prasankumar, S. Brueck, and A. Taylor, Nano Lett. 9, 3565 (2009).
[CrossRef]

Davis, T.

F. Eftekhari, D. E. Gómez, and T. Davis, Opt. Lett. 39, 2994 (2014).
[CrossRef]

T. Davis, K. Vernon, and D. Gómez, J. Appl. Phys. 106, 043502 (2009).
[CrossRef]

Davis, T. J.

T. J. Davis, D. E. Gómez, and K. C. Vernon, Nano Lett. 10, 2618 (2010).
[CrossRef]

T. J. Davis, K. C. Vernon, and D. E. Gómez, Phys. Rev. B 79, 155423 (2009).
[CrossRef]

Eftekhari, F.

Engheta, N.

N. Engheta, Science 317, 1698 (2007).
[CrossRef]

N. Engheta, A. Salandrino, and A. Alù, Phys. Rev. Lett. 95, 95504 (2005).
[CrossRef]

Enzo, D. F.

A. Nikolaenko, D. A. Francesco, S. Boden, N. Papasimakis, P. Ashburn, D. F. Enzo, and N. Zheludev, Phys. Rev. Lett. 104, 153902 (2010).
[CrossRef]

Francesco, D. A.

A. Nikolaenko, D. A. Francesco, S. Boden, N. Papasimakis, P. Ashburn, D. F. Enzo, and N. Zheludev, Phys. Rev. Lett. 104, 153902 (2010).
[CrossRef]

Fu, Y.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, Nano Lett. 12, 5784 (2012).
[CrossRef]

Gholipour, B.

B. Gholipour, J. Zhang, K. MacDonald, D. Hewak, and N. Zheludev, Adv. Mater. 25, 3050 (2013).
[CrossRef]

Gómez, D.

T. Davis, K. Vernon, and D. Gómez, J. Appl. Phys. 106, 043502 (2009).
[CrossRef]

Gómez, D. E.

F. Eftekhari, D. E. Gómez, and T. Davis, Opt. Lett. 39, 2994 (2014).
[CrossRef]

T. J. Davis, D. E. Gómez, and K. C. Vernon, Nano Lett. 10, 2618 (2010).
[CrossRef]

T. J. Davis, K. C. Vernon, and D. E. Gómez, Phys. Rev. B 79, 155423 (2009).
[CrossRef]

Gong, Q.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, Nano Lett. 12, 5784 (2012).
[CrossRef]

Gu, M.

M. Ren, B. Jia, J. Ou, E. Plum, J. Zhang, K. MacDonald, A. Nikolaenko, J. Xu, M. Gu, and N. Zheludev, Adv. Mater. 23, 5540 (2011).
[CrossRef]

Hewak, D.

B. Gholipour, J. Zhang, K. MacDonald, D. Hewak, and N. Zheludev, Adv. Mater. 25, 3050 (2013).
[CrossRef]

Hu, X.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, Nano Lett. 12, 5784 (2012).
[CrossRef]

Jia, B.

M. Ren, B. Jia, J. Ou, E. Plum, J. Zhang, K. MacDonald, A. Nikolaenko, J. Xu, M. Gu, and N. Zheludev, Adv. Mater. 23, 5540 (2011).
[CrossRef]

Kall, M.

H. Wei, Z. Wang, X. Tian, M. Kall, and H. Xu, Nat. Commun. 2, 387 (2011).
[CrossRef]

Ku, Z.

K. Dani, Z. Ku, P. Upadhya, R. Prasankumar, S. Brueck, and A. Taylor, Nano Lett. 9, 3565 (2009).
[CrossRef]

Lu, C.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, Nano Lett. 12, 5784 (2012).
[CrossRef]

MacDonald, K.

B. Gholipour, J. Zhang, K. MacDonald, D. Hewak, and N. Zheludev, Adv. Mater. 25, 3050 (2013).
[CrossRef]

J. Zhang, K. MacDonald, and N. Zheludev, Light Sci. Appl. 1, e18 (2012).
[CrossRef]

M. Ren, B. Jia, J. Ou, E. Plum, J. Zhang, K. MacDonald, A. Nikolaenko, J. Xu, M. Gu, and N. Zheludev, Adv. Mater. 23, 5540 (2011).
[CrossRef]

Martin, O.

B. Abasahl, C. Santschi, and O. Martin, ACS Photon. 1, 403 (2014).

Nikolaenko, A.

M. Ren, B. Jia, J. Ou, E. Plum, J. Zhang, K. MacDonald, A. Nikolaenko, J. Xu, M. Gu, and N. Zheludev, Adv. Mater. 23, 5540 (2011).
[CrossRef]

A. Nikolaenko, D. A. Francesco, S. Boden, N. Papasimakis, P. Ashburn, D. F. Enzo, and N. Zheludev, Phys. Rev. Lett. 104, 153902 (2010).
[CrossRef]

Ou, J.

M. Ren, B. Jia, J. Ou, E. Plum, J. Zhang, K. MacDonald, A. Nikolaenko, J. Xu, M. Gu, and N. Zheludev, Adv. Mater. 23, 5540 (2011).
[CrossRef]

Papasimakis, N.

A. Nikolaenko, D. A. Francesco, S. Boden, N. Papasimakis, P. Ashburn, D. F. Enzo, and N. Zheludev, Phys. Rev. Lett. 104, 153902 (2010).
[CrossRef]

Plum, E.

M. Ren, B. Jia, J. Ou, E. Plum, J. Zhang, K. MacDonald, A. Nikolaenko, J. Xu, M. Gu, and N. Zheludev, Adv. Mater. 23, 5540 (2011).
[CrossRef]

Ponizovskaya, E.

Prasankumar, R.

K. Dani, Z. Ku, P. Upadhya, R. Prasankumar, S. Brueck, and A. Taylor, Nano Lett. 9, 3565 (2009).
[CrossRef]

Ren, M.

M. Ren, B. Jia, J. Ou, E. Plum, J. Zhang, K. MacDonald, A. Nikolaenko, J. Xu, M. Gu, and N. Zheludev, Adv. Mater. 23, 5540 (2011).
[CrossRef]

Salandrino, A.

N. Engheta, A. Salandrino, and A. Alù, Phys. Rev. Lett. 95, 95504 (2005).
[CrossRef]

Santschi, C.

B. Abasahl, C. Santschi, and O. Martin, ACS Photon. 1, 403 (2014).

Shamir, J.

Shen, Y.

Taylor, A.

K. Dani, Z. Ku, P. Upadhya, R. Prasankumar, S. Brueck, and A. Taylor, Nano Lett. 9, 3565 (2009).
[CrossRef]

Tian, X.

H. Wei, Z. Wang, X. Tian, M. Kall, and H. Xu, Nat. Commun. 2, 387 (2011).
[CrossRef]

Upadhya, P.

K. Dani, Z. Ku, P. Upadhya, R. Prasankumar, S. Brueck, and A. Taylor, Nano Lett. 9, 3565 (2009).
[CrossRef]

Vernon, K.

T. Davis, K. Vernon, and D. Gómez, J. Appl. Phys. 106, 043502 (2009).
[CrossRef]

Vernon, K. C.

T. J. Davis, D. E. Gómez, and K. C. Vernon, Nano Lett. 10, 2618 (2010).
[CrossRef]

T. J. Davis, K. C. Vernon, and D. E. Gómez, Phys. Rev. B 79, 155423 (2009).
[CrossRef]

Vikram, C.

Wang, F.

Wang, S.

Wang, Z.

H. Wei, Z. Wang, X. Tian, M. Kall, and H. Xu, Nat. Commun. 2, 387 (2011).
[CrossRef]

Wei, H.

H. Wei, Z. Wang, X. Tian, M. Kall, and H. Xu, Nat. Commun. 2, 387 (2011).
[CrossRef]

Wu, W.

Xu, H.

H. Wei, Z. Wang, X. Tian, M. Kall, and H. Xu, Nat. Commun. 2, 387 (2011).
[CrossRef]

Xu, J.

M. Ren, B. Jia, J. Ou, E. Plum, J. Zhang, K. MacDonald, A. Nikolaenko, J. Xu, M. Gu, and N. Zheludev, Adv. Mater. 23, 5540 (2011).
[CrossRef]

Yang, H.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, Nano Lett. 12, 5784 (2012).
[CrossRef]

Yue, S.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, Nano Lett. 12, 5784 (2012).
[CrossRef]

Zavalin, A.

Zhang, J.

B. Gholipour, J. Zhang, K. MacDonald, D. Hewak, and N. Zheludev, Adv. Mater. 25, 3050 (2013).
[CrossRef]

J. Zhang, K. MacDonald, and N. Zheludev, Light Sci. Appl. 1, e18 (2012).
[CrossRef]

M. Ren, B. Jia, J. Ou, E. Plum, J. Zhang, K. MacDonald, A. Nikolaenko, J. Xu, M. Gu, and N. Zheludev, Adv. Mater. 23, 5540 (2011).
[CrossRef]

Zhang, X.

Zheludev, N.

B. Gholipour, J. Zhang, K. MacDonald, D. Hewak, and N. Zheludev, Adv. Mater. 25, 3050 (2013).
[CrossRef]

J. Zhang, K. MacDonald, and N. Zheludev, Light Sci. Appl. 1, e18 (2012).
[CrossRef]

M. Ren, B. Jia, J. Ou, E. Plum, J. Zhang, K. MacDonald, A. Nikolaenko, J. Xu, M. Gu, and N. Zheludev, Adv. Mater. 23, 5540 (2011).
[CrossRef]

A. Nikolaenko, D. A. Francesco, S. Boden, N. Papasimakis, P. Ashburn, D. F. Enzo, and N. Zheludev, Phys. Rev. Lett. 104, 153902 (2010).
[CrossRef]

ACS Photon. (1)

B. Abasahl, C. Santschi, and O. Martin, ACS Photon. 1, 403 (2014).

Adv. Mater. (2)

M. Ren, B. Jia, J. Ou, E. Plum, J. Zhang, K. MacDonald, A. Nikolaenko, J. Xu, M. Gu, and N. Zheludev, Adv. Mater. 23, 5540 (2011).
[CrossRef]

B. Gholipour, J. Zhang, K. MacDonald, D. Hewak, and N. Zheludev, Adv. Mater. 25, 3050 (2013).
[CrossRef]

Appl. Opt. (1)

J. Appl. Phys. (1)

T. Davis, K. Vernon, and D. Gómez, J. Appl. Phys. 106, 043502 (2009).
[CrossRef]

Light Sci. Appl. (1)

J. Zhang, K. MacDonald, and N. Zheludev, Light Sci. Appl. 1, e18 (2012).
[CrossRef]

Nano Lett. (3)

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, Nano Lett. 12, 5784 (2012).
[CrossRef]

K. Dani, Z. Ku, P. Upadhya, R. Prasankumar, S. Brueck, and A. Taylor, Nano Lett. 9, 3565 (2009).
[CrossRef]

T. J. Davis, D. E. Gómez, and K. C. Vernon, Nano Lett. 10, 2618 (2010).
[CrossRef]

Nat. Commun. (1)

H. Wei, Z. Wang, X. Tian, M. Kall, and H. Xu, Nat. Commun. 2, 387 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

T. J. Davis, K. C. Vernon, and D. E. Gómez, Phys. Rev. B 79, 155423 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

A. Nikolaenko, D. A. Francesco, S. Boden, N. Papasimakis, P. Ashburn, D. F. Enzo, and N. Zheludev, Phys. Rev. Lett. 104, 153902 (2010).
[CrossRef]

N. Engheta, A. Salandrino, and A. Alù, Phys. Rev. Lett. 95, 95504 (2005).
[CrossRef]

Science (1)

N. Engheta, Science 317, 1698 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Optical modulation concept. (a) Metamaterial is created from arrayed plasmonic circuits each consisting of three gold nanorods where the signal and control beams are orthogonally polarized. (b) The signal beam S excites LSPs (solid arrows) in phase in the two arms. The control beam C excites the LSP in the bridge, which induces LSPs out of phase (dashed arrows) and leads to interference. (c) Experimental configuration for testing the metamaterial.

Fig. 2.
Fig. 2.

Transmitted intensity through the metamaterial with different control beam phases ϕc and amplitudes C expressed as a ratio to the signal amplitude S. A patch of parallel gold rods was included as a control. The scanning electron microscope (SEM) image shows the resist pattern of a circuit during fabrication.

Fig. 3.
Fig. 3.

Experimental extinction and modulation spectra measured from the metamaterial. (a) Extinction spectra with two different control amplitudes and with phases ϕc switched between 0° (solid) and 180° (dashed) for an incidence angle of 25°; (b) as per (a) but with different control amplitudes and phases ϕc switched between 90° (dashed) and 90° (solid). (c) Modulation spectra derived from the data in (a); the crosstalk measures how much of the control beam is transmitted through the optical system. (d) Modulation spectra derived from the data in (b).

Fig. 4.
Fig. 4.

All-optical switch created from a diffracting metamaterial. (a) The metamaterial consists of vertical lines of plasmonic circuits on a glass substrate with each line separated by P=1 micrometers. The inset shows the SEM image of the structure. A polarizer filters out the control beam, with an orientation as shown by the arrow. Only the transmitted signal beam and the two diffracting orders pass through. (b) Two images taken with a camera that show the intensity change in the two diffraction orders with the change in the phase of the control beam, which results in a switching effect. The zero order (transmitted beam) is not shown in the image. The incident light wavelength was 700 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ψexp(iϕa)[Scos(q·d/2)+iRbGCsin(ks·d/2)exp(i(ϕc+ϕb))],
I=S2(12(C/S)RbGΘsin(ϕc+ϕb)+(RbGΘ)2(C/S)2).

Metrics