Abstract

We propose a method to generate the phase-conjugate wave of the vector field by degenerate four-wave mixing in a c-cut Fe-doped LiNbO3 crystal. We demonstrate experimentally that the phase-conjugate wave of the vector field can be generated. In particular, the phase-conjugate vector field has also the peculiar function of compensating the polarization distortion, as the traditional phase-conjugate scaler field can compensate the phase distortion.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv and D. Pepper, Opt. Lett. 1, 16 (1977).
    [CrossRef]
  2. B. Y. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, and F. S. Faizullov, JETP Lett. 15, 109 (1972).
  3. V. Wang and C. R. Giuliano, Opt. Lett. 2, 4 (1978).
    [CrossRef]
  4. G. J. Dunning and R. C. Lind, Opt. Lett. 7, 558 (1982).
    [CrossRef]
  5. J. H. Marburger, Opt. Lett. 32, 372 (1978).
  6. S. X. Qian, L. J. Kong, Y. N. Li, C. H. Tu, and H. T. Wang, Opt. Lett. 39, 1917 (2014).
    [CrossRef]
  7. X. L. Wang, J. P. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, Opt. Lett. 32, 3549 (2007).
    [CrossRef]
  8. W. Su, C. Chen, and Y. Ouyang, Appl. Opt. 46, 3233 (2007).
    [CrossRef]
  9. P. Réfrégier and B. Javidi, Opt. Lett. 20, 767 (1995).
    [CrossRef]
  10. O. Matoba and B. Javidi, Appl. Opt. 43, 2915 (2004).
    [CrossRef]
  11. X. L. Wang, Y. N. Li, J. Chen, C. S. Guo, J. P. Ding, and H. T. Wang, Opt. Express 18, 10786 (2010).
    [CrossRef]

2014 (1)

2010 (1)

2007 (2)

2004 (1)

1995 (1)

1982 (1)

1978 (2)

J. H. Marburger, Opt. Lett. 32, 372 (1978).

V. Wang and C. R. Giuliano, Opt. Lett. 2, 4 (1978).
[CrossRef]

1977 (1)

1972 (1)

B. Y. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, and F. S. Faizullov, JETP Lett. 15, 109 (1972).

Chen, C.

Chen, J.

Ding, J. P.

Dunning, G. J.

Faizullov, F. S.

B. Y. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, and F. S. Faizullov, JETP Lett. 15, 109 (1972).

Giuliano, C. R.

Guo, C. S.

Javidi, B.

Kong, L. J.

Li, Y. N.

Lind, R. C.

Marburger, J. H.

J. H. Marburger, Opt. Lett. 32, 372 (1978).

Matoba, O.

Ni, W. J.

Ouyang, Y.

Pepper, D.

Popovichev, V. I.

B. Y. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, and F. S. Faizullov, JETP Lett. 15, 109 (1972).

Qian, S. X.

Ragul’skii, V. V.

B. Y. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, and F. S. Faizullov, JETP Lett. 15, 109 (1972).

Réfrégier, P.

Su, W.

Tu, C. H.

Wang, H. T.

Wang, V.

Wang, X. L.

Yariv, A.

Zel’dovich, B. Y.

B. Y. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, and F. S. Faizullov, JETP Lett. 15, 109 (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of experimental setup to record and generate the vector fields. BS, beam splitter; PBS, polarization BS; HWP, half-wave plate; L, lens; M, high-reflection mirror; S, shutters; and VFGS, vector field generation system.

Fig. 2.
Fig. 2.

Object vector fields and the phase-conjugate waves. (a) Intensity and polarization distributions of the generated radially polarized field as the object vector field. (b)—(e) Intensity distributions of (a) behind an analyzer at polarization angles of 0°, 45°, 90°, and 135°, respectively. (f) Intensity and polarization distributions of the phase-conjugate wave of the radially polarized field by a linearly polarized reading field at a polarization angle of 44°. (g)—(j) Intensity distributions of (f) behind an analyzer at polarization angles of 0°, 45°, 90°, and 135°, respectively.

Fig. 3.
Fig. 3.

(a) Intensity distribution of a generated radially polarized vector field as an object vector field. (b)—(d) Intensity distributions of (a) behind an analyzer at polarization angles of 0°, 45°, and 90°, respectively. (e) Intensity distribution of the hybridly polarized vector field between QWP1 and L3. (f)—(h) Intensity distributions of (e) behind an analyzer at polarization angles of 0°, 45°, and 90°, respectively. (i)—(l) Measured Stokes parameters (s0,s1,s2,s3) of (e), respectively. (m) Intensity distribution of the reconstructed field. (n)—(p) Intensity distributions of (m) behind an analyzer at polarization angles of 0°, 45°, and 90°, respectively. (q) Intensity distribution of the reconstructed field between QWP1 and L3. (r)—(t) Intensity distributions of (q) behind an analyzer at polarization angles of 0°, 45°, and 90°, respectively. (u)—(x) Measured Stokes parameters (s0,s1,s2,s3) of (q), respectively.

Fig. 4.
Fig. 4.

(a) Intensity distribution of a radially polarized vector field obtained by CCD1 when it does not propagate along the +c axis of LiNbO3 crystal. (b)–(e) Intensity distributions of (a) behind an analyzer at polarization angles of 0°, 45°, 90°, and 135°, respectively. (f) Intensity distribution of the reconstructed field obtained by CCD2. (g)–(j) Intensity distributions of (f) behind an analyzer at polarization angles of 0°, 45°, 90°, and 135°, respectively.

Fig. 5.
Fig. 5.

(a) Intensity distribution of the object field imaged by CCD1. (b) Intensity distribution of the reconstructed conjugate field imaged by CCD2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E=A0(cosδe^x+sinδe^y),withδ=mφ+φ0,

Metrics