Abstract

We present a fast and low-cost delay generator for terahertz (THz) waves that transfers a rotational motion of a transparent dielectric cube into an effective THz delay. The device is easily implemented in the THz beam path and allows for coherent sampling over 40 ps with a scan rate of hundreds of hertz. Furthermore, we show that our approach is particularly suitable for fast THz imaging.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, Appl. Opt. 44, 6849 (2005).
    [CrossRef]
  2. D. Banerjee, W. Von Spiegel, M. Thomson, S. Schabel, and H. Roskos, Opt. Express 16, 9060 (2008).
    [CrossRef]
  3. A. Gowen, C. O’Sullivan, and C. O’Donnell, Trends Food Sci. Technol. 25, 40 (2012).
    [CrossRef]
  4. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, Opt. Express 16, 9565 (2008).
    [CrossRef]
  5. M. Van Exter, C. Fattinger, and D. Grischkowsky, Opt. Lett. 14, 1128 (1989).
    [CrossRef]
  6. N. Krumbholz, M. Schwerdtfeger, T. Hasek, B. Scherger, and M. Koch, in IRMMW-THz 2008, 33rd International Conference (IEEE, 2008), pp. 1–2.
  7. H. Roehle, R. Dietz, B. Sartorius, and M. Schell, in IRMMW-THz, 37th International Conference (IEEE, 2012), pp. 1–2.
  8. D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Lúotin, Opt. Express 18, 26163 (2010).
    [CrossRef]
  9. M. Skorobogatiy, Opt. Express 22, 11812 (2014).
    [CrossRef]
  10. J. Xu and X.-C. Zhang, Opt. Lett. 29, 2082 (2004).
    [CrossRef]
  11. T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, Opt. Express 18, 1613 (2010).
    [CrossRef]
  12. H. Kitahara, M. Tani, and M. Hangyo, Rev. Sci. Instrum. 80, 076104 (2009).
    [CrossRef]
  13. R. D. Boggy, J. M. Eggleston, R. H. Johnson, and C. W. Schulthess, “Rapid scanning autocorrelation detector,” U.S. patent4,406,542 (Sept.27, 1983).
  14. A. Sengupta, A. Bandyopadhyay, B. Bowden, J. Harrington, and J. Federici, Electron. Lett. 42, 1477 (2006).
    [CrossRef]
  15. H. Roehle, R. Dietz, H. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, Opt. Express 18, 2296 (2010).
    [CrossRef]

2014

2012

A. Gowen, C. O’Sullivan, and C. O’Donnell, Trends Food Sci. Technol. 25, 40 (2012).
[CrossRef]

2010

2009

H. Kitahara, M. Tani, and M. Hangyo, Rev. Sci. Instrum. 80, 076104 (2009).
[CrossRef]

2008

2006

A. Sengupta, A. Bandyopadhyay, B. Bowden, J. Harrington, and J. Federici, Electron. Lett. 42, 1477 (2006).
[CrossRef]

2005

2004

1989

Araki, T.

Bandyopadhyay, A.

A. Sengupta, A. Bandyopadhyay, B. Bowden, J. Harrington, and J. Federici, Electron. Lett. 42, 1477 (2006).
[CrossRef]

Banerjee, D.

Beigang, R.

Boggy, R. D.

R. D. Boggy, J. M. Eggleston, R. H. Johnson, and C. W. Schulthess, “Rapid scanning autocorrelation detector,” U.S. patent4,406,542 (Sept.27, 1983).

Böttcher, J.

Bowden, B.

A. Sengupta, A. Bandyopadhyay, B. Bowden, J. Harrington, and J. Federici, Electron. Lett. 42, 1477 (2006).
[CrossRef]

Dietz, R.

H. Roehle, R. Dietz, H. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, Opt. Express 18, 2296 (2010).
[CrossRef]

H. Roehle, R. Dietz, B. Sartorius, and M. Schell, in IRMMW-THz, 37th International Conference (IEEE, 2012), pp. 1–2.

Eggleston, J. M.

R. D. Boggy, J. M. Eggleston, R. H. Johnson, and C. W. Schulthess, “Rapid scanning autocorrelation detector,” U.S. patent4,406,542 (Sept.27, 1983).

Ellrich, F.

Fattinger, C.

Federici, J.

A. Sengupta, A. Bandyopadhyay, B. Bowden, J. Harrington, and J. Federici, Electron. Lett. 42, 1477 (2006).
[CrossRef]

George, S.

Goiran, M.

Gowen, A.

A. Gowen, C. O’Sullivan, and C. O’Donnell, Trends Food Sci. Technol. 25, 40 (2012).
[CrossRef]

Grischkowsky, D.

Hangyo, M.

H. Kitahara, M. Tani, and M. Hangyo, Rev. Sci. Instrum. 80, 076104 (2009).
[CrossRef]

Harrington, J.

A. Sengupta, A. Bandyopadhyay, B. Bowden, J. Harrington, and J. Federici, Electron. Lett. 42, 1477 (2006).
[CrossRef]

Hasek, T.

N. Krumbholz, M. Schwerdtfeger, T. Hasek, B. Scherger, and M. Koch, in IRMMW-THz 2008, 33rd International Conference (IEEE, 2008), pp. 1–2.

Hensel, H.

Hochrein, T.

Holzwarth, R.

Johnson, R. H.

R. D. Boggy, J. M. Eggleston, R. H. Johnson, and C. W. Schulthess, “Rapid scanning autocorrelation detector,” U.S. patent4,406,542 (Sept.27, 1983).

Keilmann, F.

Kitahara, H.

H. Kitahara, M. Tani, and M. Hangyo, Rev. Sci. Instrum. 80, 076104 (2009).
[CrossRef]

Koch, M.

T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, Opt. Express 18, 1613 (2010).
[CrossRef]

N. Krumbholz, M. Schwerdtfeger, T. Hasek, B. Scherger, and M. Koch, in IRMMW-THz 2008, 33rd International Conference (IEEE, 2008), pp. 1–2.

Krumbholz, N.

T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, Opt. Express 18, 1613 (2010).
[CrossRef]

N. Krumbholz, M. Schwerdtfeger, T. Hasek, B. Scherger, and M. Koch, in IRMMW-THz 2008, 33rd International Conference (IEEE, 2008), pp. 1–2.

Künzel, H.

Lúotin, J.

Mei, M.

Molter, D.

O’Donnell, C.

A. Gowen, C. O’Sullivan, and C. O’Donnell, Trends Food Sci. Technol. 25, 40 (2012).
[CrossRef]

O’Sullivan, C.

A. Gowen, C. O’Sullivan, and C. O’Donnell, Trends Food Sci. Technol. 25, 40 (2012).
[CrossRef]

Roehle, H.

Roskos, H.

Sartorius, B.

Sawanaka, K.

Schabel, S.

Schell, M.

Scherger, B.

N. Krumbholz, M. Schwerdtfeger, T. Hasek, B. Scherger, and M. Koch, in IRMMW-THz 2008, 33rd International Conference (IEEE, 2008), pp. 1–2.

Schlak, M.

Schulthess, C. W.

R. D. Boggy, J. M. Eggleston, R. H. Johnson, and C. W. Schulthess, “Rapid scanning autocorrelation detector,” U.S. patent4,406,542 (Sept.27, 1983).

Schwerdtfeger, M.

N. Krumbholz, M. Schwerdtfeger, T. Hasek, B. Scherger, and M. Koch, in IRMMW-THz 2008, 33rd International Conference (IEEE, 2008), pp. 1–2.

Sengupta, A.

A. Sengupta, A. Bandyopadhyay, B. Bowden, J. Harrington, and J. Federici, Electron. Lett. 42, 1477 (2006).
[CrossRef]

Skorobogatiy, M.

Stanze, D.

Tani, M.

H. Kitahara, M. Tani, and M. Hangyo, Rev. Sci. Instrum. 80, 076104 (2009).
[CrossRef]

Thomson, M.

Van Exter, M.

Venghaus, H.

Von Spiegel, W.

Weinland, T.

Wilk, R.

Xu, J.

Yasuda, T.

Yasui, T.

Zhang, X.-C.

Appl. Opt.

Electron. Lett.

A. Sengupta, A. Bandyopadhyay, B. Bowden, J. Harrington, and J. Federici, Electron. Lett. 42, 1477 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

H. Kitahara, M. Tani, and M. Hangyo, Rev. Sci. Instrum. 80, 076104 (2009).
[CrossRef]

Trends Food Sci. Technol.

A. Gowen, C. O’Sullivan, and C. O’Donnell, Trends Food Sci. Technol. 25, 40 (2012).
[CrossRef]

Other

N. Krumbholz, M. Schwerdtfeger, T. Hasek, B. Scherger, and M. Koch, in IRMMW-THz 2008, 33rd International Conference (IEEE, 2008), pp. 1–2.

H. Roehle, R. Dietz, B. Sartorius, and M. Schell, in IRMMW-THz, 37th International Conference (IEEE, 2012), pp. 1–2.

R. D. Boggy, J. M. Eggleston, R. H. Johnson, and C. W. Schulthess, “Rapid scanning autocorrelation detector,” U.S. patent4,406,542 (Sept.27, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Illustration of the device that delays the incident THz waves. (b), (c) THz waves are guided over a prism mirror through a rotating polymer block. Optical length of the THz beam path changes as a function of the rotation angle of the block.

Fig. 2.
Fig. 2.

(a) Incident beam under 0° transmits through the plastic block with thickness h and width w. Beam diameter of the THz wave b restricts the operation range of the device. (b) Varying the incident angle yields a refraction of the beam and a change in beam path.

Fig. 3.
Fig. 3.

(a) Calculated time delay over the incident angle. Due to clipping and transmission coefficient, the operation angle of the segments is limited from 0° to 36°. Within this area, a time delay of 40 ps can be achieved. (b) Resulting raw waveforms as a function of the rotation angle. (c) THz waveforms with linearized time axis without averaging.

Fig. 4.
Fig. 4.

(a) Measured and simulated time delay of the THz wave for different rotation angles of the block. (b) Measured THz spectra for varying angle positions. (c) THz waveform after propagating through a 8-cm-thick block of HDPE compared to the reference. (d) Corresponding spectra. (e) Refractive index and (f) absorption coefficient of HDPE.

Fig. 5.
Fig. 5.

(a) THz waveforms with linearized time axis for different rotation velocities of the block (here, a 100-mm-wide block was used for higher resolution). (b) Resulting THz spectra; constant position of the water absorption lines indicate successful reconstruction of linear time axis for each rotation speed.

Fig. 6.
Fig. 6.

(a) Photograph (top) and recorded THz image (bottom) of an airbag cover with predetermined breaking line and label. (b) Photograph (top) and THz image (bottom) of a 3.5 in. floppy disk.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

β=sin1(sin(α)n),
s=wcos(β),
l=s·cos(αβ),
Δt(w,n,α)=(wsc/nwlc),
k=(h/2)2+(w/2)2,
αmin=sin1(b/2k)+cos1(h/2k)π2,

Metrics