Abstract

We report on a precisely tunable and highly stable femtosecond oscillator-pumped optical parametric amplifier at a 41.7 MHz repetition rate for spectroscopic applications. A novel concept based on cw-seeding of a first amplification stage with subsequent spectral broadening and shaping, followed by two further amplification stages, allows for precise sub-nanometer and gap-free tuning from 1.35 to 1.75 μm and 2.55 to 4.5 μm. Excellent spectral stability is demonstrated with deviations of less than 0.008% rms central wavelength and 1.6% rms bandwidth over 1 h. Spectral shaping of the seed pulse allows precise adjustment of both the bandwidth and the pulse duration over a broad range at a given central wavelength. Transform-limited pulses nearly as short as 107 fs are achieved. More than half a Watt of average power in the near- and more than 200 mW in the mid-infrared with power fluctuations less than 0.6% rms over 1 h provide an excellent basis for spectroscopic experiments. The pulse-to-pulse power fluctuations are as small as 1.8%. Further, we demonstrate for the first time, to the best of our knowledge, that by using hollow-core capillaries with highly nonlinear liquids as a host medium for self-phase modulation, the signal tuning range can be extended and covers the region from 1.4 μm up to the point of degeneracy at 2.07 μm. Hence, the idler covers 2.07 to 4.0 μm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Selm, M. Winterhalder, A. Zumbusch, G. Krauss, T. Hanke, A. Sell, and A. Leitenstorfer, Opt. Lett. 35, 3282 (2010).
    [CrossRef]
  2. D. Yoshitomi, Y. Kobayashi, M. Kakehata, H. Takada, and K. Torizuka, Opt. Express 14, 6359 (2006).
    [CrossRef]
  3. S. Kumkar, G. Krauss, M. Wunram, D. Fehrenbacher, U. Demirbas, D. Brida, and A. Leitenstorfer, Opt. Lett. 37, 554 (2012).
    [CrossRef]
  4. D. C. Edelstein, E. S. Wachman, and C. L. Tang, Appl. Phys. Lett. 54, 1728 (1989).
    [CrossRef]
  5. T. I. Ferreiro, J. Sun, and D. T. Reid, Opt. Express 19, 24159 (2011).
    [CrossRef]
  6. M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, Appl. Phys. B 81, 875 (2005).
    [CrossRef]
  7. A. Killi, A. Steinmann, G. Palmer, U. Morgner, H. Bartelt, and J. Kobelke, Opt. Lett. 31, 125 (2006).
    [CrossRef]
  8. A. Schliesser, N. Picqué, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
    [CrossRef]
  9. J. Krauth, A. Steinmann, R. Hegenbarth, M. Conforti, and H. Giessen, Opt. Express 21, 11516 (2013).
    [CrossRef]
  10. S. Marzenell, R. Beigang, and R. Wallenstein, Appl. Phys. B 69, 423 (1999).
    [CrossRef]
  11. N. Tolstik, E. Sorokin, and I. T. Sorokina, Opt. Lett. 38, 299 (2013).
    [CrossRef]
  12. I. T. Sorokina, E. Sorokin, S. Mirov, V. Fedorov, V. Badikov, V. Panyutin, and K. Schaffers, Opt. Lett. 27, 1040 (2002).
    [CrossRef]
  13. N. Coluccelli, H. Fonnum, M. Haakestad, A. Gambetta, D. Gatti, M. Marangoni, P. Laporta, and G. Galzerano, Opt. Express 20, 22042 (2012).
    [CrossRef]
  14. J. E. Bjorkholm and H. G. Danielmeyer, Appl. Phys. Lett. 15, 171 (1969).
    [CrossRef]
  15. S. Hädrich, T. Gottschall, J. Rothhardt, J. Limpert, and A. Tünnermann, Opt. Express 18, 3158 (2010).
    [CrossRef]
  16. K. Nose, Y. Ozeki, T. Kishi, K. Sumimura, N. Nishizawa, K. Fukui, Y. Kanematsu, and K. Itoh, Opt. Express 20, 13958 (2012).
    [CrossRef]
  17. G. Genty, S. Coen, and J. M. Dudley, J. Opt. Soc. Am. B 24, 1771 (2007).
    [CrossRef]
  18. A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.
  19. J. Teipel, K. Franke, D. Türke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, Appl. Phys. B 77, 245 (2003).
    [CrossRef]
  20. S. Kedenburg, A. Steinmann, R. Hegenbarth, T. Steinle, and H. Giessen, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B, doi: 10.1007/s00340-014-5833-y (2014).
  21. K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, Opt. Express 20, 8148 (2012).
    [CrossRef]
  22. T. Steinle, A. Steinmann, R. Hegenbarth, and H. Giessen, Opt. Express 22, 9567 (2014).
  23. G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
    [CrossRef]
  24. L. Xiao, N. V. Wheeler, N. Healy, and A. C. Peacock, Opt. Express 21, 28751 (2013).
    [CrossRef]

2014 (1)

2013 (3)

2012 (5)

2011 (1)

2010 (2)

2007 (1)

2006 (2)

2005 (1)

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, Appl. Phys. B 81, 875 (2005).
[CrossRef]

2003 (2)

J. Teipel, K. Franke, D. Türke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, Appl. Phys. B 77, 245 (2003).
[CrossRef]

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[CrossRef]

2002 (1)

1999 (1)

S. Marzenell, R. Beigang, and R. Wallenstein, Appl. Phys. B 69, 423 (1999).
[CrossRef]

1989 (1)

D. C. Edelstein, E. S. Wachman, and C. L. Tang, Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

1969 (1)

J. E. Bjorkholm and H. G. Danielmeyer, Appl. Phys. Lett. 15, 171 (1969).
[CrossRef]

Badikov, V.

Bartelt, H.

Baum, P.

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, Appl. Phys. B 81, 875 (2005).
[CrossRef]

Beigang, R.

S. Marzenell, R. Beigang, and R. Wallenstein, Appl. Phys. B 69, 423 (1999).
[CrossRef]

Bjorkholm, J. E.

J. E. Bjorkholm and H. G. Danielmeyer, Appl. Phys. Lett. 15, 171 (1969).
[CrossRef]

Bodermann, B.

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, Appl. Phys. B 81, 875 (2005).
[CrossRef]

Brida, D.

Cerullo, G.

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[CrossRef]

Coen, S.

Coluccelli, N.

Conforti, M.

Danielmeyer, H. G.

J. E. Bjorkholm and H. G. Danielmeyer, Appl. Phys. Lett. 15, 171 (1969).
[CrossRef]

De Silvestri, S.

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[CrossRef]

Demirbas, U.

Dudley, J. M.

Edelstein, D. C.

D. C. Edelstein, E. S. Wachman, and C. L. Tang, Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

Fedorov, V.

Fehrenbacher, D.

Ferreiro, T. I.

Fonnum, H.

Franke, K.

J. Teipel, K. Franke, D. Türke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, Appl. Phys. B 77, 245 (2003).
[CrossRef]

Fukui, K.

Galzerano, G.

Gambetta, A.

Gatti, D.

Genty, G.

Giessen, H.

T. Steinle, A. Steinmann, R. Hegenbarth, and H. Giessen, Opt. Express 22, 9567 (2014).

J. Krauth, A. Steinmann, R. Hegenbarth, M. Conforti, and H. Giessen, Opt. Express 21, 11516 (2013).
[CrossRef]

J. Teipel, K. Franke, D. Türke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, Appl. Phys. B 77, 245 (2003).
[CrossRef]

S. Kedenburg, A. Steinmann, R. Hegenbarth, T. Steinle, and H. Giessen, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B, doi: 10.1007/s00340-014-5833-y (2014).

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.

Gottschall, T.

Greve, M.

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, Appl. Phys. B 81, 875 (2005).
[CrossRef]

Haakestad, M.

Hädrich, S.

Hanke, T.

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[CrossRef]

Healy, N.

Hegenbarth, R.

T. Steinle, A. Steinmann, R. Hegenbarth, and H. Giessen, Opt. Express 22, 9567 (2014).

J. Krauth, A. Steinmann, R. Hegenbarth, M. Conforti, and H. Giessen, Opt. Express 21, 11516 (2013).
[CrossRef]

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.

S. Kedenburg, A. Steinmann, R. Hegenbarth, T. Steinle, and H. Giessen, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B, doi: 10.1007/s00340-014-5833-y (2014).

Itoh, K.

Kakehata, M.

Kanematsu, Y.

Kedenburg, S.

S. Kedenburg, A. Steinmann, R. Hegenbarth, T. Steinle, and H. Giessen, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B, doi: 10.1007/s00340-014-5833-y (2014).

Kieu, K.

Killi, A.

Kishi, T.

Kobayashi, Y.

Kobelke, J.

Krauss, G.

Krauth, J.

Kumkar, S.

Laporta, P.

Leitenstorfer, A.

Leuschner, M.

J. Teipel, K. Franke, D. Türke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, Appl. Phys. B 77, 245 (2003).
[CrossRef]

Limpert, J.

Marangoni, M.

Marzenell, S.

S. Marzenell, R. Beigang, and R. Wallenstein, Appl. Phys. B 69, 423 (1999).
[CrossRef]

Meiser, D.

J. Teipel, K. Franke, D. Türke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, Appl. Phys. B 77, 245 (2003).
[CrossRef]

Metzger, B.

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.

Mirov, S.

Morgner, U.

Nishizawa, N.

Norwood, R. A.

Nose, K.

Ozeki, Y.

Palmer, G.

Panyutin, V.

Peacock, A. C.

Peyghambarian, N.

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[CrossRef]

Reid, D. T.

Riedle, E.

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, Appl. Phys. B 81, 875 (2005).
[CrossRef]

Rothhardt, J.

Schaffers, K.

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[CrossRef]

Schneebeli, L.

Sell, A.

Selm, R.

Sorokin, E.

Sorokina, I. T.

Steinle, T.

T. Steinle, A. Steinmann, R. Hegenbarth, and H. Giessen, Opt. Express 22, 9567 (2014).

S. Kedenburg, A. Steinmann, R. Hegenbarth, T. Steinle, and H. Giessen, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B, doi: 10.1007/s00340-014-5833-y (2014).

Steinmann, A.

T. Steinle, A. Steinmann, R. Hegenbarth, and H. Giessen, Opt. Express 22, 9567 (2014).

J. Krauth, A. Steinmann, R. Hegenbarth, M. Conforti, and H. Giessen, Opt. Express 21, 11516 (2013).
[CrossRef]

A. Killi, A. Steinmann, G. Palmer, U. Morgner, H. Bartelt, and J. Kobelke, Opt. Lett. 31, 125 (2006).
[CrossRef]

S. Kedenburg, A. Steinmann, R. Hegenbarth, T. Steinle, and H. Giessen, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B, doi: 10.1007/s00340-014-5833-y (2014).

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.

Sumimura, K.

Sun, J.

Takada, H.

Tang, C. L.

D. C. Edelstein, E. S. Wachman, and C. L. Tang, Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

Teipel, J.

J. Teipel, K. Franke, D. Türke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, Appl. Phys. B 77, 245 (2003).
[CrossRef]

Telle, H. R.

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, Appl. Phys. B 81, 875 (2005).
[CrossRef]

Tolstik, N.

Torizuka, K.

Tünnermann, A.

Türke, D.

J. Teipel, K. Franke, D. Türke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, Appl. Phys. B 77, 245 (2003).
[CrossRef]

Wachman, E. S.

D. C. Edelstein, E. S. Wachman, and C. L. Tang, Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

Wallenstein, R.

S. Marzenell, R. Beigang, and R. Wallenstein, Appl. Phys. B 69, 423 (1999).
[CrossRef]

Warken, F.

J. Teipel, K. Franke, D. Türke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, Appl. Phys. B 77, 245 (2003).
[CrossRef]

Wheeler, N. V.

Winterhalder, M.

Wunram, M.

Xiao, L.

Yoshitomi, D.

Zumbusch, A.

Appl. Phys. B (3)

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, Appl. Phys. B 81, 875 (2005).
[CrossRef]

S. Marzenell, R. Beigang, and R. Wallenstein, Appl. Phys. B 69, 423 (1999).
[CrossRef]

J. Teipel, K. Franke, D. Türke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, Appl. Phys. B 77, 245 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

J. E. Bjorkholm and H. G. Danielmeyer, Appl. Phys. Lett. 15, 171 (1969).
[CrossRef]

D. C. Edelstein, E. S. Wachman, and C. L. Tang, Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

A. Schliesser, N. Picqué, and T. W. Hänsch, Nat. Photonics 6, 440 (2012).
[CrossRef]

Opt. Express (9)

Opt. Lett. (5)

Rev. Sci. Instrum. (1)

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[CrossRef]

Other (2)

S. Kedenburg, A. Steinmann, R. Hegenbarth, T. Steinle, and H. Giessen, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B, doi: 10.1007/s00340-014-5833-y (2014).

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup consisting of (I) a cw-seeded parametric amplification stage, (II) a thin tapered or liquid-filled fiber, (III) a prism monochromator, (IV) a parametric power amplifier, and (V) a prism compressor sequence. HWP, half-wave plate; DM, dichroic mirror; ATT, variable attenuator; TC, temperature controller; and PPLN, periodically poled lithium niobate crystal.

Fig. 2.
Fig. 2.

(a) Signal tuning spectra over the whole tuning range from 1350 to 1750 nm central wavelength and (b) fine tuning in steps of 2 nm around 1575 nm using the spatial filter. The peak at 1750 nm shows a pedestal which results from upcoming optical parametric generation. (c) For wavelengths shorter than 1750 nm, the optical parametric generation is efficiently suppressed by the seed.

Fig. 3.
Fig. 3.

Variation of bandwidth by shaping the seed spectrum (a)–(c) from 22 to 40 nm at 1575 nm central wavelength and (d)–(f) corresponding autocorrelations after a prism compressor. Before compression, the pulse duration is typically on the order of 180 fs. The given values are autocorrelation FWHM and pulse duration assuming sech2 pulses (embraced value).

Fig. 4.
Fig. 4.

Pulse-to-pulse stability over 2 μs (a) and temporal stability of average power over 1 h measured with 10 Hz bandwidth (b) at 1600 nm. Spectral stability close to the edge of the tuning range at 1650 nm over 1 h (c). The performance will increase if the wavelength is chosen closer to the cw-seed wavelength of 1540 nm.

Fig. 5.
Fig. 5.

Signal spectra showing a tuning range starting at 1400 nm. (a) The signal can be tuned up to 2065 nm, where the signal and idler are degenerate. The measured power for signal wavelengths higher than 1750 nm includes a share of the idler, which is also visible in the spectrum. (b) Seed spectrum emerging from a 24 cm long CS2-filled capillary with 2.0 μm core diameter. The atmospheric transition lines of water vapor are visible in the spectra from 1800 to 1950 nm.

Metrics