Abstract

We demonstrate a novel high-temperature sensor using multicore fiber (MCF) spliced between two single-mode fibers. Launching light into such fiber chains creates a supermode interference pattern in the MCF that translates into a periodic modulation in the transmission spectrum. The spectrum shifts with changes in temperature and can be easily monitored in real time. This device is simple to fabricate and has been experimentally shown to operate at temperatures up to 1000°C in a very stable manner. Through simulation, we have optimized the multicore fiber design for sharp spectral features and high overall transmission in the optical communications window. Comparison between the experiment and the simulation has also allowed determination of the thermo-optic coefficient of the MCF as a function of temperature.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Layton and J. A. Bucaro, Appl. Opt. 18, 666 (1979).
    [CrossRef]
  2. A. Mehta, W. Mohammed, and E. G. Johnson, IEEE Photon. Technol. Lett. 15, 1129 (2003).
    [CrossRef]
  3. E. Li, X. Wang, and C. Zhang, Appl. Phys. Lett. 89, 091119 (2006).
    [CrossRef]
  4. A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, Opt. Commun. 219, 215 (2003).
    [CrossRef]
  5. J. Zhang and S. Peng, in 2010 Symposium on Photonics and Optoelectronics (IEEE, 2010), pp. 1–4.
  6. S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J.-P. Meunier, J. Lightwave Technol. 27, 2348 (2009).
    [CrossRef]
  7. S. Silva, J. L. Santos, F. X. Malcata, J. Kobelke, K. Schuster, and O. Frazão, Opt. Lett. 36, 852 (2011).
    [CrossRef]
  8. G. A. Cárdenas-Sevilla, V. Finazzi, J. Villatoro, and V. Pruneri, Opt. Express 19, 7596 (2011).
    [CrossRef]
  9. A. Zhou, G. Li, Y. Zhang, Y. Wang, C. Guan, J. Yang, and L. Yuan, J. Lightwave Technol. 29, 2985 (2011).
    [CrossRef]
  10. J. R. Guzman-Sepulveda and D. A. May-Arrioja, Opt. Express 21, 11853 (2013).
    [CrossRef]
  11. R. M. Silva, M. S. Ferreira, J. Kobelke, K. Schuster, and O. Frazão, Opt. Lett. 36, 3939 (2011).
    [CrossRef]
  12. J. R. Guzman-Sepulveda, D. Lopez-Cortes, I. Hernandez-Romano, W. Margulis, and D. A. May-Arrioja, in Quantum Electronics, and Laser Science Conference (Optical Society of America, 2012), paper JW2A.114.
  13. F. C. Favero, R. Spittel, F. Just, J. Kobelke, M. Rothhardt, and H. Bartelt, Opt. Express 21, 30266 (2013).
    [CrossRef]
  14. J. Demas, M. D. W. Grogan, T. Alkeskjold, and S. Ramachandran, Opt. Lett. 37, 3768 (2012).
    [CrossRef]
  15. J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, Opt. Lett. 39, 4309 (2014).
  16. H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, Opt. Lett. 33, 2455 (2008).
    [CrossRef]
  17. D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” arXiv:0805.0091, (2008).
  18. G. Ghosh, IEEE Photon. Technol. Lett. 6, 431 (1994).
    [CrossRef]
  19. Y.-J. Kim, U.-C. Paek, and B. H. Lee, Opt. Lett. 27, 1297 (2002).
    [CrossRef]

2014 (1)

2013 (2)

2012 (1)

2011 (4)

2009 (1)

2008 (1)

2006 (1)

E. Li, X. Wang, and C. Zhang, Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

2003 (2)

A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, Opt. Commun. 219, 215 (2003).
[CrossRef]

A. Mehta, W. Mohammed, and E. G. Johnson, IEEE Photon. Technol. Lett. 15, 1129 (2003).
[CrossRef]

2002 (1)

1994 (1)

G. Ghosh, IEEE Photon. Technol. Lett. 6, 431 (1994).
[CrossRef]

1979 (1)

Alkeskjold, T.

Amezcua-Correa, R.

Antonio-Lopez, J. E.

Antony, C. S.

A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, Opt. Commun. 219, 215 (2003).
[CrossRef]

Bartelt, H.

Bucaro, J. A.

Cárdenas-Sevilla, G. A.

Choi, E. S.

Choi, H. Y.

Demas, J.

Eznaveh, Z. S.

Favero, F. C.

Ferreira, M. S.

Finazzi, V.

Frazão, O.

Frey, B. J.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” arXiv:0805.0091, (2008).

Ghosh, G.

G. Ghosh, IEEE Photon. Technol. Lett. 6, 431 (1994).
[CrossRef]

Grogan, M. D. W.

Guan, C.

Guzman-Sepulveda, J. R.

J. R. Guzman-Sepulveda and D. A. May-Arrioja, Opt. Express 21, 11853 (2013).
[CrossRef]

J. R. Guzman-Sepulveda, D. Lopez-Cortes, I. Hernandez-Romano, W. Margulis, and D. A. May-Arrioja, in Quantum Electronics, and Laser Science Conference (Optical Society of America, 2012), paper JW2A.114.

Hernandez-Romano, I.

J. R. Guzman-Sepulveda, D. Lopez-Cortes, I. Hernandez-Romano, W. Margulis, and D. A. May-Arrioja, in Quantum Electronics, and Laser Science Conference (Optical Society of America, 2012), paper JW2A.114.

Johnson, E. G.

A. Mehta, W. Mohammed, and E. G. Johnson, IEEE Photon. Technol. Lett. 15, 1129 (2003).
[CrossRef]

Just, F.

Kim, Y.-J.

Kobelke, J.

Kumar, A.

Kumar, Y. B. P.

Layton, M. R.

Lee, B. H.

Leviton, D. B.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” arXiv:0805.0091, (2008).

Li, E.

E. Li, X. Wang, and C. Zhang, Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Li, G.

LiKamWa, P.

Lopez-Cortes, D.

J. R. Guzman-Sepulveda, D. Lopez-Cortes, I. Hernandez-Romano, W. Margulis, and D. A. May-Arrioja, in Quantum Electronics, and Laser Science Conference (Optical Society of America, 2012), paper JW2A.114.

Malcata, F. X.

Margulis, W.

J. R. Guzman-Sepulveda, D. Lopez-Cortes, I. Hernandez-Romano, W. Margulis, and D. A. May-Arrioja, in Quantum Electronics, and Laser Science Conference (Optical Society of America, 2012), paper JW2A.114.

Marin, E.

May-Arrioja, D. A.

J. R. Guzman-Sepulveda and D. A. May-Arrioja, Opt. Express 21, 11853 (2013).
[CrossRef]

J. R. Guzman-Sepulveda, D. Lopez-Cortes, I. Hernandez-Romano, W. Margulis, and D. A. May-Arrioja, in Quantum Electronics, and Laser Science Conference (Optical Society of America, 2012), paper JW2A.114.

Mehta, A.

A. Mehta, W. Mohammed, and E. G. Johnson, IEEE Photon. Technol. Lett. 15, 1129 (2003).
[CrossRef]

Meunier, J.-P.

Mohammed, W.

A. Mehta, W. Mohammed, and E. G. Johnson, IEEE Photon. Technol. Lett. 15, 1129 (2003).
[CrossRef]

Paek, U.-C.

Park, K. S.

Park, S. J.

Peng, S.

J. Zhang and S. Peng, in 2010 Symposium on Photonics and Optoelectronics (IEEE, 2010), pp. 1–4.

Pruneri, V.

Ramachandran, S.

Rothhardt, M.

Santos, J. L.

Schülzgen, A.

Schuster, K.

Sharma, P.

A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, Opt. Commun. 219, 215 (2003).
[CrossRef]

Silva, R. M.

Silva, S.

Spittel, R.

Tripathi, S. M.

Varshney, R. K.

Villatoro, J.

Wang, X.

E. Li, X. Wang, and C. Zhang, Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Wang, Y.

Yang, J.

Yuan, L.

Zhang, C.

E. Li, X. Wang, and C. Zhang, Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Zhang, J.

J. Zhang and S. Peng, in 2010 Symposium on Photonics and Optoelectronics (IEEE, 2010), pp. 1–4.

Zhang, Y.

Zhou, A.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Li, X. Wang, and C. Zhang, Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Mehta, W. Mohammed, and E. G. Johnson, IEEE Photon. Technol. Lett. 15, 1129 (2003).
[CrossRef]

G. Ghosh, IEEE Photon. Technol. Lett. 6, 431 (1994).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Commun. (1)

A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, Opt. Commun. 219, 215 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (6)

Other (3)

J. Zhang and S. Peng, in 2010 Symposium on Photonics and Optoelectronics (IEEE, 2010), pp. 1–4.

J. R. Guzman-Sepulveda, D. Lopez-Cortes, I. Hernandez-Romano, W. Margulis, and D. A. May-Arrioja, in Quantum Electronics, and Laser Science Conference (Optical Society of America, 2012), paper JW2A.114.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” arXiv:0805.0091, (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Measured temperature shift of a seven-core fiber SMS device over 15 h in a high-temperature oven.

Fig. 2.
Fig. 2.

Image of seven-core fiber facet and simulated supermodes supported by the seven-core fiber.

Fig. 3.
Fig. 3.

Diagram of SMS device with supermode interference shown in the MCF.

Fig. 4.
Fig. 4.

Image of 19-core fiber facet and simulated supermodes excited by SMF in 19-core fiber.

Fig. 5.
Fig. 5.

Comparison of simulated and measured transmission spectra of SMS devices with 4 and 12 cm of (a) seven- and (b) 19-core fiber, respectively.

Fig. 6.
Fig. 6.

SMS transmission spectrum dependence on mode fractional power in the interfering supermodes of the seven-core fiber.

Fig. 7.
Fig. 7.

Facet image of MCF with (a) 9.5 μm cores and 13.6 μm pitch, (b) 9.2 μm cores and 11 μm pitch, and (c) transmission spectra.

Fig. 8.
Fig. 8.

Calculations showing maximum transmission occurring when power is excited in two interfering supermodes.

Fig. 9.
Fig. 9.

Spectral shift of SMS device, with fit and calculated thermo-optic coefficient.

Metrics