Abstract

We report simultaneous laser pulse shortening and wavelength conversion based on spectral-temporal correlation in high-gain optical parametric generation (OPG). By spectrally filtering the off-peak signal energy, we shortened a 560 ps pump pulse at 1064 nm to an 80 ps signal pulse at 1.5 μm from a 45 mm long PPLN optical parametric generator with 60 μJ pump energy from a passively Q-switched Nd:YAG laser. Using the same technique, we further demonstrated a 3.6 time shortened laser pulse at 1072 nm from noncollinearly phase matched OPG in a 44 mm long lithium niobate crystal with 3 mJ amplified pump energy from the same Nd:YAG laser.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Taira, Opt. Mater. Express 1, 1040 (2011).
    [CrossRef]
  2. R. Lehneis, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Lett. 37, 4401 (2012).
    [CrossRef]
  3. F. Seifert, V. Petrov, and F. Noack, Opt. Lett. 19, 837 (1994).
    [CrossRef]
  4. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. I. Stegeman, E. W. Van Stryland, and H. Vanherzeele, Opt. Lett. 17, 28 (1992).
    [CrossRef]
  5. A. Fendt, W. kranitzky, A. Laubereau, and W. Kaiser, Opt. Commun. 28, 142 (1979).
    [CrossRef]
  6. W. Kranitzky, K. Ding, A. Seilmeier, and W. Kaiser, Opt. Commun. 34, 483 (1980).
    [CrossRef]
  7. A. C. Chiang, T. D. Wang, Y. Y. Lin, C. W. Liu, Y. H. Chen, B. C. Wong, Y. C. Huang, J. T. Shy, Y. P. Lan, Y. F. Chen, and P. H. Tsao, IEEE J. Quantum Electron. 40, 791 (2004).
    [CrossRef]
  8. Y. F. Kong, W. L. Zhang, X. J. Chen, J. J. Xu, and G. Y. Zhang, J. Phys. Condens. Matter 11, 2139 (1999).
  9. A. C. Chiang, T. D. Wang, Y. Y. Lin, S. T. Lin, H. H. Lee, Y. C. Huang, and Y. H. Chen, Opt. Lett. 30, 3392 (2005).
    [CrossRef]

2012 (1)

2011 (1)

2005 (1)

2004 (1)

A. C. Chiang, T. D. Wang, Y. Y. Lin, C. W. Liu, Y. H. Chen, B. C. Wong, Y. C. Huang, J. T. Shy, Y. P. Lan, Y. F. Chen, and P. H. Tsao, IEEE J. Quantum Electron. 40, 791 (2004).
[CrossRef]

1999 (1)

Y. F. Kong, W. L. Zhang, X. J. Chen, J. J. Xu, and G. Y. Zhang, J. Phys. Condens. Matter 11, 2139 (1999).

1994 (1)

1992 (1)

1980 (1)

W. Kranitzky, K. Ding, A. Seilmeier, and W. Kaiser, Opt. Commun. 34, 483 (1980).
[CrossRef]

1979 (1)

A. Fendt, W. kranitzky, A. Laubereau, and W. Kaiser, Opt. Commun. 28, 142 (1979).
[CrossRef]

Chen, X. J.

Y. F. Kong, W. L. Zhang, X. J. Chen, J. J. Xu, and G. Y. Zhang, J. Phys. Condens. Matter 11, 2139 (1999).

Chen, Y. F.

A. C. Chiang, T. D. Wang, Y. Y. Lin, C. W. Liu, Y. H. Chen, B. C. Wong, Y. C. Huang, J. T. Shy, Y. P. Lan, Y. F. Chen, and P. H. Tsao, IEEE J. Quantum Electron. 40, 791 (2004).
[CrossRef]

Chen, Y. H.

A. C. Chiang, T. D. Wang, Y. Y. Lin, S. T. Lin, H. H. Lee, Y. C. Huang, and Y. H. Chen, Opt. Lett. 30, 3392 (2005).
[CrossRef]

A. C. Chiang, T. D. Wang, Y. Y. Lin, C. W. Liu, Y. H. Chen, B. C. Wong, Y. C. Huang, J. T. Shy, Y. P. Lan, Y. F. Chen, and P. H. Tsao, IEEE J. Quantum Electron. 40, 791 (2004).
[CrossRef]

Chiang, A. C.

A. C. Chiang, T. D. Wang, Y. Y. Lin, S. T. Lin, H. H. Lee, Y. C. Huang, and Y. H. Chen, Opt. Lett. 30, 3392 (2005).
[CrossRef]

A. C. Chiang, T. D. Wang, Y. Y. Lin, C. W. Liu, Y. H. Chen, B. C. Wong, Y. C. Huang, J. T. Shy, Y. P. Lan, Y. F. Chen, and P. H. Tsao, IEEE J. Quantum Electron. 40, 791 (2004).
[CrossRef]

DeSalvo, R.

Ding, K.

W. Kranitzky, K. Ding, A. Seilmeier, and W. Kaiser, Opt. Commun. 34, 483 (1980).
[CrossRef]

Fendt, A.

A. Fendt, W. kranitzky, A. Laubereau, and W. Kaiser, Opt. Commun. 28, 142 (1979).
[CrossRef]

Hagan, D. J.

Huang, Y. C.

A. C. Chiang, T. D. Wang, Y. Y. Lin, S. T. Lin, H. H. Lee, Y. C. Huang, and Y. H. Chen, Opt. Lett. 30, 3392 (2005).
[CrossRef]

A. C. Chiang, T. D. Wang, Y. Y. Lin, C. W. Liu, Y. H. Chen, B. C. Wong, Y. C. Huang, J. T. Shy, Y. P. Lan, Y. F. Chen, and P. H. Tsao, IEEE J. Quantum Electron. 40, 791 (2004).
[CrossRef]

Jauregui, C.

Kaiser, W.

W. Kranitzky, K. Ding, A. Seilmeier, and W. Kaiser, Opt. Commun. 34, 483 (1980).
[CrossRef]

A. Fendt, W. kranitzky, A. Laubereau, and W. Kaiser, Opt. Commun. 28, 142 (1979).
[CrossRef]

Kong, Y. F.

Y. F. Kong, W. L. Zhang, X. J. Chen, J. J. Xu, and G. Y. Zhang, J. Phys. Condens. Matter 11, 2139 (1999).

Kranitzky, W.

W. Kranitzky, K. Ding, A. Seilmeier, and W. Kaiser, Opt. Commun. 34, 483 (1980).
[CrossRef]

A. Fendt, W. kranitzky, A. Laubereau, and W. Kaiser, Opt. Commun. 28, 142 (1979).
[CrossRef]

Lan, Y. P.

A. C. Chiang, T. D. Wang, Y. Y. Lin, C. W. Liu, Y. H. Chen, B. C. Wong, Y. C. Huang, J. T. Shy, Y. P. Lan, Y. F. Chen, and P. H. Tsao, IEEE J. Quantum Electron. 40, 791 (2004).
[CrossRef]

Laubereau, A.

A. Fendt, W. kranitzky, A. Laubereau, and W. Kaiser, Opt. Commun. 28, 142 (1979).
[CrossRef]

Lee, H. H.

Lehneis, R.

Limpert, J.

Lin, S. T.

Lin, Y. Y.

A. C. Chiang, T. D. Wang, Y. Y. Lin, S. T. Lin, H. H. Lee, Y. C. Huang, and Y. H. Chen, Opt. Lett. 30, 3392 (2005).
[CrossRef]

A. C. Chiang, T. D. Wang, Y. Y. Lin, C. W. Liu, Y. H. Chen, B. C. Wong, Y. C. Huang, J. T. Shy, Y. P. Lan, Y. F. Chen, and P. H. Tsao, IEEE J. Quantum Electron. 40, 791 (2004).
[CrossRef]

Liu, C. W.

A. C. Chiang, T. D. Wang, Y. Y. Lin, C. W. Liu, Y. H. Chen, B. C. Wong, Y. C. Huang, J. T. Shy, Y. P. Lan, Y. F. Chen, and P. H. Tsao, IEEE J. Quantum Electron. 40, 791 (2004).
[CrossRef]

Noack, F.

Petrov, V.

Seifert, F.

Seilmeier, A.

W. Kranitzky, K. Ding, A. Seilmeier, and W. Kaiser, Opt. Commun. 34, 483 (1980).
[CrossRef]

Sheik-Bahae, M.

Shy, J. T.

A. C. Chiang, T. D. Wang, Y. Y. Lin, C. W. Liu, Y. H. Chen, B. C. Wong, Y. C. Huang, J. T. Shy, Y. P. Lan, Y. F. Chen, and P. H. Tsao, IEEE J. Quantum Electron. 40, 791 (2004).
[CrossRef]

Stegeman, G. I.

Steinmetz, A.

Taira, T.

Tsao, P. H.

A. C. Chiang, T. D. Wang, Y. Y. Lin, C. W. Liu, Y. H. Chen, B. C. Wong, Y. C. Huang, J. T. Shy, Y. P. Lan, Y. F. Chen, and P. H. Tsao, IEEE J. Quantum Electron. 40, 791 (2004).
[CrossRef]

Tünnermann, A.

Van Stryland, E. W.

Vanherzeele, H.

Wang, T. D.

A. C. Chiang, T. D. Wang, Y. Y. Lin, S. T. Lin, H. H. Lee, Y. C. Huang, and Y. H. Chen, Opt. Lett. 30, 3392 (2005).
[CrossRef]

A. C. Chiang, T. D. Wang, Y. Y. Lin, C. W. Liu, Y. H. Chen, B. C. Wong, Y. C. Huang, J. T. Shy, Y. P. Lan, Y. F. Chen, and P. H. Tsao, IEEE J. Quantum Electron. 40, 791 (2004).
[CrossRef]

Wong, B. C.

A. C. Chiang, T. D. Wang, Y. Y. Lin, C. W. Liu, Y. H. Chen, B. C. Wong, Y. C. Huang, J. T. Shy, Y. P. Lan, Y. F. Chen, and P. H. Tsao, IEEE J. Quantum Electron. 40, 791 (2004).
[CrossRef]

Xu, J. J.

Y. F. Kong, W. L. Zhang, X. J. Chen, J. J. Xu, and G. Y. Zhang, J. Phys. Condens. Matter 11, 2139 (1999).

Zhang, G. Y.

Y. F. Kong, W. L. Zhang, X. J. Chen, J. J. Xu, and G. Y. Zhang, J. Phys. Condens. Matter 11, 2139 (1999).

Zhang, W. L.

Y. F. Kong, W. L. Zhang, X. J. Chen, J. J. Xu, and G. Y. Zhang, J. Phys. Condens. Matter 11, 2139 (1999).

IEEE J. Quantum Electron. (1)

A. C. Chiang, T. D. Wang, Y. Y. Lin, C. W. Liu, Y. H. Chen, B. C. Wong, Y. C. Huang, J. T. Shy, Y. P. Lan, Y. F. Chen, and P. H. Tsao, IEEE J. Quantum Electron. 40, 791 (2004).
[CrossRef]

J. Phys. Condens. Matter (1)

Y. F. Kong, W. L. Zhang, X. J. Chen, J. J. Xu, and G. Y. Zhang, J. Phys. Condens. Matter 11, 2139 (1999).

Opt. Commun. (2)

A. Fendt, W. kranitzky, A. Laubereau, and W. Kaiser, Opt. Commun. 28, 142 (1979).
[CrossRef]

W. Kranitzky, K. Ding, A. Seilmeier, and W. Kaiser, Opt. Commun. 34, 483 (1980).
[CrossRef]

Opt. Lett. (4)

Opt. Mater. Express (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Theoretically calculated OPG gain versus time and signal wavelength and (b) pulse width variation versus signal wavelength. The time axis is normalized to the pump pulse width τp and the signal wavelength λs is embedded in the phase mismatch ΔkL for a given pump wavelength λp. The signal pulse width decreases as the signal wavelength deviates from the phase matched one.

Fig. 2.
Fig. 2.

Schematic of the first experiment to demonstrate parametric pulse shortening in a collinear phase matched OPG. A passively Q-switched Nd:YAG laser is focused into a PPLN optical parametric generator, from which the output signal pulse near 1.5 μm is spectrally filtered in a grating monochromator and measured by a fast photodiode (PD). The dichroic mirror after the PPLN crystal is highly reflective at the pump wavelength 1064 nm and anti-reflecting at the signal wavelength, dumping the pump pulse into the beam dump (BD).

Fig. 3.
Fig. 3.

(a) Measured OPG signal spectrum (open dot). The theoretical fitting curve (continuous line) is plotted by using Eq. (1) with Γ0L=13.1. (b) Measured (open dot) and deconvolved (solid dot) signal pulse width versus wavelength. The theoretical curve (continuous line) is also plotted from Eq. (1) with Γ0L=13.1.

Fig. 4.
Fig. 4.

Experimental setup for noncollinearly phase matched OPG. The pump laser at 1064 nm is first amplified by a flash-lamp Nd:YAG amplifier and focused into a lithium niobate crystal. The signal wave at 1070 nm is generated at ±1.2° from the pump beam direction, as shown by the off-center bright dots on a downstream phosphor screen.

Fig. 5.
Fig. 5.

Measured signal spectrum (continuous line) overlaid with data points of measured signal pulse widths (open dot, with reference to the right vertical axis). The actual signal pulse widths, deduced from Eq. (7), are shown with solid dots. Again, the signal pulse width decreases when the signal wavelength is away from the spectral center.

Fig. 6.
Fig. 6.

Shortest measured signal pulse profile at 1072 nm from the noncollinearly phase matched OPG, indicating a smooth pulse envelope with a FWHM of 160 ps. The actual signal pulse width is 146 ps, deduced from Eq. (7).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Gs(λs,t)=Is(t)Is01=Γ2(λs,t)L2sinh2[g(λs,t)L][g(λs,t)L]2,
g(λs,t)=Γ2(λs,t)(Δk/2)2,
Γ(λs,t)=4π2deff2ninsλsλiEp0e2ln2×t2/τp2=Γ0e2ln2×t2/τp2,
Gs(λs,t)Is(t)Is0e2Γ(λs,t)L4=14exp(2Γ0L×e2ln2×t2/τp2),
τs=τpΓ0L.
ΔkB(λs)=4Γ(λs,t)ln2/L,
τa=τm2(65ps)2.

Metrics