Abstract

We propose a novel method to generate triangular pulses based on the nonlinear polarization rotation (NPR) effect in a highly nonlinear fiber. A continuous wave probe beam is polarization-rotated by an intensity-modulated control beam via the NPR effect. A polarization-division-multiplexing emulator is exploited to split the probe beam into two orthogonally polarized states with imbalanced time delay. After detection by a photodetector, a 90° microwave phase shifter is used to compensate the phases of the fundamental and the third-order harmonic components in order to generate triangular pulses. Triangular pulses at 5 and 6 GHz with full duty cycles are experimentally generated. The root mean square errors between the generated and the simulated waveforms are 3.6e4 and 1e4 for triangular pulses at 5 and 6 GHz, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription