Abstract

We propose a novel method to generate triangular pulses based on the nonlinear polarization rotation (NPR) effect in a highly nonlinear fiber. A continuous wave probe beam is polarization-rotated by an intensity-modulated control beam via the NPR effect. A polarization-division-multiplexing emulator is exploited to split the probe beam into two orthogonally polarized states with imbalanced time delay. After detection by a photodetector, a 90° microwave phase shifter is used to compensate the phases of the fundamental and the third-order harmonic components in order to generate triangular pulses. Triangular pulses at 5 and 6 GHz with full duty cycles are experimentally generated. The root mean square errors between the generated and the simulated waveforms are 3.6e4 and 1e4 for triangular pulses at 5 and 6 GHz, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Bhamber, A. I. Latkin, S. Boscolo, and S. K. Turitsyn, “All-optical TDM to WDM signal conversion and partial regeneration using XPM with triangular pulses,” presented at the 34th European Conference on Optical Communication, Brussels, Belgium, 2008, paper Th.1.B.2.
  2. A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, “Optical frequency conversion, pulse compression and signal copying using triangular pulses,” presented at the 34th European Conference on Optical Communication, Brussels, Belgium, 2008, paper Mo.3.F.4.
  3. A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, J. Opt. Soc. Am. B 26, 1492 (2009).
    [CrossRef]
  4. J. Li, X. Zhang, B. Hraimel, T. Ning, L. Pei, and K. Wu, J. Lightwave Technol. 30, 1617 (2012).
    [CrossRef]
  5. W. Li, W. T. Wang, W. H. Sun, W. Y. Wang, and N. H. Zhu, Opt. Express 22, 14993 (2014).
    [CrossRef]
  6. F. Zhang, X. Ge, and S. Pan, Opt. Lett. 38, 4491 (2013).
    [CrossRef]
  7. W. Li, W. T. Wang, and N. H. Zhu, IEEE Photon. J. 6, 5500608 (2014).
  8. W. Liu and J. Yao, J. Lightwave Technol. 31, 1636 (2013).
    [CrossRef]
  9. X. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, B. Luo, and B. Lu, “Photonic generation of triangular-shaped microwave pulses using SBS-based optical carrier processing,” J. Lightwave Technol. (to be published).
  10. J. Ye, L. Yan, W. Pan, B. Luo, X. Zou, A. Yi, and S. Yao, Opt. Lett. 36, 1458 (2011).
    [CrossRef]
  11. Z. Wu, L. Lei, J. Dong, and X. Zhang, Opt. Lett. 39, 2258 (2014).
    [CrossRef]
  12. Y. M. Chang, J. Lee, and J. H. Lee, Opt. Express 18, 20072 (2010).
    [CrossRef]

2014 (3)

2013 (2)

2012 (1)

2011 (1)

2010 (1)

2009 (1)

Bhamber, R. S.

A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, J. Opt. Soc. Am. B 26, 1492 (2009).
[CrossRef]

R. S. Bhamber, A. I. Latkin, S. Boscolo, and S. K. Turitsyn, “All-optical TDM to WDM signal conversion and partial regeneration using XPM with triangular pulses,” presented at the 34th European Conference on Optical Communication, Brussels, Belgium, 2008, paper Th.1.B.2.

A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, “Optical frequency conversion, pulse compression and signal copying using triangular pulses,” presented at the 34th European Conference on Optical Communication, Brussels, Belgium, 2008, paper Mo.3.F.4.

Boscolo, S.

A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, J. Opt. Soc. Am. B 26, 1492 (2009).
[CrossRef]

A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, “Optical frequency conversion, pulse compression and signal copying using triangular pulses,” presented at the 34th European Conference on Optical Communication, Brussels, Belgium, 2008, paper Mo.3.F.4.

R. S. Bhamber, A. I. Latkin, S. Boscolo, and S. K. Turitsyn, “All-optical TDM to WDM signal conversion and partial regeneration using XPM with triangular pulses,” presented at the 34th European Conference on Optical Communication, Brussels, Belgium, 2008, paper Th.1.B.2.

Chang, Y. M.

Dong, J.

Ge, X.

Hraimel, B.

Latkin, A. I.

A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, J. Opt. Soc. Am. B 26, 1492 (2009).
[CrossRef]

R. S. Bhamber, A. I. Latkin, S. Boscolo, and S. K. Turitsyn, “All-optical TDM to WDM signal conversion and partial regeneration using XPM with triangular pulses,” presented at the 34th European Conference on Optical Communication, Brussels, Belgium, 2008, paper Th.1.B.2.

A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, “Optical frequency conversion, pulse compression and signal copying using triangular pulses,” presented at the 34th European Conference on Optical Communication, Brussels, Belgium, 2008, paper Mo.3.F.4.

Lee, J.

Lee, J. H.

Lei, L.

Li, J.

Li, W.

W. Li, W. T. Wang, W. H. Sun, W. Y. Wang, and N. H. Zhu, Opt. Express 22, 14993 (2014).
[CrossRef]

W. Li, W. T. Wang, and N. H. Zhu, IEEE Photon. J. 6, 5500608 (2014).

Liu, W.

Liu, X.

X. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, B. Luo, and B. Lu, “Photonic generation of triangular-shaped microwave pulses using SBS-based optical carrier processing,” J. Lightwave Technol. (to be published).

Lu, B.

X. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, B. Luo, and B. Lu, “Photonic generation of triangular-shaped microwave pulses using SBS-based optical carrier processing,” J. Lightwave Technol. (to be published).

Luo, B.

J. Ye, L. Yan, W. Pan, B. Luo, X. Zou, A. Yi, and S. Yao, Opt. Lett. 36, 1458 (2011).
[CrossRef]

X. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, B. Luo, and B. Lu, “Photonic generation of triangular-shaped microwave pulses using SBS-based optical carrier processing,” J. Lightwave Technol. (to be published).

Ning, T.

Pan, S.

Pan, W.

J. Ye, L. Yan, W. Pan, B. Luo, X. Zou, A. Yi, and S. Yao, Opt. Lett. 36, 1458 (2011).
[CrossRef]

X. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, B. Luo, and B. Lu, “Photonic generation of triangular-shaped microwave pulses using SBS-based optical carrier processing,” J. Lightwave Technol. (to be published).

Pei, L.

Sun, W. H.

Turitsyn, S. K.

A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, J. Opt. Soc. Am. B 26, 1492 (2009).
[CrossRef]

A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, “Optical frequency conversion, pulse compression and signal copying using triangular pulses,” presented at the 34th European Conference on Optical Communication, Brussels, Belgium, 2008, paper Mo.3.F.4.

R. S. Bhamber, A. I. Latkin, S. Boscolo, and S. K. Turitsyn, “All-optical TDM to WDM signal conversion and partial regeneration using XPM with triangular pulses,” presented at the 34th European Conference on Optical Communication, Brussels, Belgium, 2008, paper Th.1.B.2.

Wang, W. T.

W. Li, W. T. Wang, W. H. Sun, W. Y. Wang, and N. H. Zhu, Opt. Express 22, 14993 (2014).
[CrossRef]

W. Li, W. T. Wang, and N. H. Zhu, IEEE Photon. J. 6, 5500608 (2014).

Wang, W. Y.

Wu, K.

Wu, Z.

Yan, L.

J. Ye, L. Yan, W. Pan, B. Luo, X. Zou, A. Yi, and S. Yao, Opt. Lett. 36, 1458 (2011).
[CrossRef]

X. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, B. Luo, and B. Lu, “Photonic generation of triangular-shaped microwave pulses using SBS-based optical carrier processing,” J. Lightwave Technol. (to be published).

Yao, J.

Yao, S.

Ye, J.

Yi, A.

Zhang, F.

Zhang, X.

Zheng, D.

X. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, B. Luo, and B. Lu, “Photonic generation of triangular-shaped microwave pulses using SBS-based optical carrier processing,” J. Lightwave Technol. (to be published).

Zhu, N. H.

W. Li, W. T. Wang, and N. H. Zhu, IEEE Photon. J. 6, 5500608 (2014).

W. Li, W. T. Wang, W. H. Sun, W. Y. Wang, and N. H. Zhu, Opt. Express 22, 14993 (2014).
[CrossRef]

Zou, X.

J. Ye, L. Yan, W. Pan, B. Luo, X. Zou, A. Yi, and S. Yao, Opt. Lett. 36, 1458 (2011).
[CrossRef]

X. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, B. Luo, and B. Lu, “Photonic generation of triangular-shaped microwave pulses using SBS-based optical carrier processing,” J. Lightwave Technol. (to be published).

IEEE Photon. J. (1)

W. Li, W. T. Wang, and N. H. Zhu, IEEE Photon. J. 6, 5500608 (2014).

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (3)

Other (3)

X. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, B. Luo, and B. Lu, “Photonic generation of triangular-shaped microwave pulses using SBS-based optical carrier processing,” J. Lightwave Technol. (to be published).

R. S. Bhamber, A. I. Latkin, S. Boscolo, and S. K. Turitsyn, “All-optical TDM to WDM signal conversion and partial regeneration using XPM with triangular pulses,” presented at the 34th European Conference on Optical Communication, Brussels, Belgium, 2008, paper Th.1.B.2.

A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, “Optical frequency conversion, pulse compression and signal copying using triangular pulses,” presented at the 34th European Conference on Optical Communication, Brussels, Belgium, 2008, paper Mo.3.F.4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic for photonic generation of triangular pulses based on NPR in a HNLF.

Fig. 2.
Fig. 2.

Measured optical spectra at (a) the output of the optical coupler, (b) the output of the HNLF, and (c) the output of the TOF.

Fig. 3.
Fig. 3.

(a) Measured electrical spectrum at the output of the PD, (c) at the output of the 90° MPS, and (b) measured waveform at the output of the PD, and (d) at the output of the 90° MPS. The sinusoidal signal applied to the IM is 5 GHz.

Fig. 4.
Fig. 4.

(a) Measured electrical spectrum at the output of the PD, (c) at the output of the 90° MPS, and (b) measured waveform at the output of the PD, and (d) at the output of the 90° MPS. The sinusoidal signal applied to the IM is 6 GHz.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Pc(t)=Pc[1+cos(ωmt)]/2,
ns(t)=2nsPc(t),nf(t)=2nfPc(t),
φs(t)=kpLns(t)=βsPc(t),φf(t)=kpLnf(t)=βfPc(t),
Ep(t)=[Es(t)Ef(t)]=12exp(jωpt)[exp[jφs(t)]exp[jφf(t)]],
Eo(t)=[E(t)E(t)]=12exp(jωpt)·[exp[jφs(t)+jφ0]+exp[jφf(t)]exp[jφs(t+Δt)+jφ0]exp[jφf(t+Δt)]],
i(t)E(t)·E*(t)+E(t)·E*(t)=DC+12{cos[γcos(ωmt)+Φ0]cos[γcos(ωmt+ωmΔt)+Φ0]},
i(t)DC122{J0+2n=1[(1)nJ2ncos(2nωmt)+(1)nJ2n1cos[(2n1)ωmt]]}+122{J0+2n=1[(1)nJ2ncos[2nωm(t+Δt)]+(1)nJ2n1cos[(2n1)ωm(t+Δt)]]},
T(t)=DC+k=1,3,51k2cos(kΩt),
T(t+T0)=DC+k=1,3,51k2cos(kΩt+kΩT0).
i(t)DC+12{J1cos(ωmt)J1cos[ωm(t+Δt)]+J2cos(2ωmt)J2cos[2ωm(t+Δt)]+J3cos(3ωmt+π)J3cos[3ωm(t+Δt)+π]}.
i(t)DC+2J1cos(ωmt)+2J19cos(3ωmt+π).
i(t)DC+2J1cos(ωmt+π/2)+2J19cos(3ωmt+3π/2).

Metrics