Abstract

This Letter demonstrates the effect and elimination of alignment error in an optical fiber current sensor. An optical model is built to illustrate the effect of alignment error, which does not induce zero drift and has a large effect on output accuracy. The total alignment error and modulation angle of the polarization controller are defined as k and θ, respectively. Parameter t is equal to 2θ2k. An elimination method of the error k is proposed, which corrects the angle θ to keep parameter t at 90 deg. This method avoids the measurement of all splice angles separately. Its feasibility is shown by simulation results. In addition, the measurement method and conditions of parameter t are presented. The final t is about 90.24 deg. Furthermore, the effectiveness of the proposed elimination method is proven by a performance test.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Frosio and R. Dandliker, Appl. Opt. 33, 6111 (1994).
    [CrossRef]
  2. J. Blake, P. Tantaswadi, and R. T. de Carvalho, IEEE Trans. Power Delivery 11, 116 (1996).
    [CrossRef]
  3. K. Bohnert, H. Brandle, M. G. Brunzel, P. Gabus, and P. Guggenbach, IEEE Trans. Ind. Appl. 43, 180 (2007).
    [CrossRef]
  4. S. Y. Xu, W. Li, F. F. Xing, and Y. Q. Wang, Opt. Express 22, 11985 (2014).
    [CrossRef]
  5. H. Y. Zhang, Y. K. Dong, J. Leeson, L. Chen, and X. Y. Bao, Appl. Opt. 50, 924 (2011).
    [CrossRef]
  6. H. Zhang, Y. S. Qiu, H. Li, A. X. Huang, H. X. Chen, and G. M. Li, Opt. Express 20, 18591 (2012).
    [CrossRef]
  7. D. Alasia and L. Thevenaz, Meas. Sci. Technol. 15, 1525 (2004).
    [CrossRef]
  8. S. X. Short, J. U. de Arruda, A. A. Tselikov, and J. N. Blake, J. Lightwave Technol. 16, 1844 (1998).
    [CrossRef]
  9. C. X. Zhang, C. S. Li, X. X. Wang, L. J. Li, J. Yu, and X. J. Feng, Appl. Opt. 51, 3977 (2012).
    [CrossRef]
  10. K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, J. Lightwave Technol. 20, 267 (2002).
    [CrossRef]
  11. S. Zhou and X. P. Zhang, IEEE Photon. Technol. Lett. 19, 1568 (2007).
    [CrossRef]
  12. S. X. Short, A. A. Tselikov, J. U. de Arruda, and J. N. Blake, J. Lightwave Technol. 16, 1212 (1998).
    [CrossRef]
  13. Y. Zhao, F. Zhou, F. Xu, and Y. Q. Lu, IEEE Photon. J. 4, 1288 (2012).
    [CrossRef]

2014 (1)

2012 (3)

2011 (1)

2007 (2)

K. Bohnert, H. Brandle, M. G. Brunzel, P. Gabus, and P. Guggenbach, IEEE Trans. Ind. Appl. 43, 180 (2007).
[CrossRef]

S. Zhou and X. P. Zhang, IEEE Photon. Technol. Lett. 19, 1568 (2007).
[CrossRef]

2004 (1)

D. Alasia and L. Thevenaz, Meas. Sci. Technol. 15, 1525 (2004).
[CrossRef]

2002 (1)

1998 (2)

1996 (1)

J. Blake, P. Tantaswadi, and R. T. de Carvalho, IEEE Trans. Power Delivery 11, 116 (1996).
[CrossRef]

1994 (1)

Alasia, D.

D. Alasia and L. Thevenaz, Meas. Sci. Technol. 15, 1525 (2004).
[CrossRef]

Bao, X. Y.

Blake, J.

J. Blake, P. Tantaswadi, and R. T. de Carvalho, IEEE Trans. Power Delivery 11, 116 (1996).
[CrossRef]

Blake, J. N.

Bohnert, K.

K. Bohnert, H. Brandle, M. G. Brunzel, P. Gabus, and P. Guggenbach, IEEE Trans. Ind. Appl. 43, 180 (2007).
[CrossRef]

K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, J. Lightwave Technol. 20, 267 (2002).
[CrossRef]

Brandle, H.

K. Bohnert, H. Brandle, M. G. Brunzel, P. Gabus, and P. Guggenbach, IEEE Trans. Ind. Appl. 43, 180 (2007).
[CrossRef]

K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, J. Lightwave Technol. 20, 267 (2002).
[CrossRef]

Brunzel, M. G.

K. Bohnert, H. Brandle, M. G. Brunzel, P. Gabus, and P. Guggenbach, IEEE Trans. Ind. Appl. 43, 180 (2007).
[CrossRef]

Chen, H. X.

Chen, L.

Dandliker, R.

de Arruda, J. U.

de Carvalho, R. T.

J. Blake, P. Tantaswadi, and R. T. de Carvalho, IEEE Trans. Power Delivery 11, 116 (1996).
[CrossRef]

Dong, Y. K.

Feng, X. J.

Frosio, G.

Gabus, P.

K. Bohnert, H. Brandle, M. G. Brunzel, P. Gabus, and P. Guggenbach, IEEE Trans. Ind. Appl. 43, 180 (2007).
[CrossRef]

K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, J. Lightwave Technol. 20, 267 (2002).
[CrossRef]

Guggenbach, P.

K. Bohnert, H. Brandle, M. G. Brunzel, P. Gabus, and P. Guggenbach, IEEE Trans. Ind. Appl. 43, 180 (2007).
[CrossRef]

Huang, A. X.

Leeson, J.

Li, C. S.

Li, G. M.

Li, H.

Li, L. J.

Li, W.

Lu, Y. Q.

Y. Zhao, F. Zhou, F. Xu, and Y. Q. Lu, IEEE Photon. J. 4, 1288 (2012).
[CrossRef]

Nehring, J.

Qiu, Y. S.

Short, S. X.

Tantaswadi, P.

J. Blake, P. Tantaswadi, and R. T. de Carvalho, IEEE Trans. Power Delivery 11, 116 (1996).
[CrossRef]

Thevenaz, L.

D. Alasia and L. Thevenaz, Meas. Sci. Technol. 15, 1525 (2004).
[CrossRef]

Tselikov, A. A.

Wang, X. X.

Wang, Y. Q.

Xing, F. F.

Xu, F.

Y. Zhao, F. Zhou, F. Xu, and Y. Q. Lu, IEEE Photon. J. 4, 1288 (2012).
[CrossRef]

Xu, S. Y.

Yu, J.

Zhang, C. X.

Zhang, H.

Zhang, H. Y.

Zhang, X. P.

S. Zhou and X. P. Zhang, IEEE Photon. Technol. Lett. 19, 1568 (2007).
[CrossRef]

Zhao, Y.

Y. Zhao, F. Zhou, F. Xu, and Y. Q. Lu, IEEE Photon. J. 4, 1288 (2012).
[CrossRef]

Zhou, F.

Y. Zhao, F. Zhou, F. Xu, and Y. Q. Lu, IEEE Photon. J. 4, 1288 (2012).
[CrossRef]

Zhou, S.

S. Zhou and X. P. Zhang, IEEE Photon. Technol. Lett. 19, 1568 (2007).
[CrossRef]

Appl. Opt. (3)

IEEE Photon. J. (1)

Y. Zhao, F. Zhou, F. Xu, and Y. Q. Lu, IEEE Photon. J. 4, 1288 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Zhou and X. P. Zhang, IEEE Photon. Technol. Lett. 19, 1568 (2007).
[CrossRef]

IEEE Trans. Ind. Appl. (1)

K. Bohnert, H. Brandle, M. G. Brunzel, P. Gabus, and P. Guggenbach, IEEE Trans. Ind. Appl. 43, 180 (2007).
[CrossRef]

IEEE Trans. Power Delivery (1)

J. Blake, P. Tantaswadi, and R. T. de Carvalho, IEEE Trans. Power Delivery 11, 116 (1996).
[CrossRef]

J. Lightwave Technol. (3)

Meas. Sci. Technol. (1)

D. Alasia and L. Thevenaz, Meas. Sci. Technol. 15, 1525 (2004).
[CrossRef]

Opt. Express (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Cross coupling in presence of alignment error.

Fig. 2.
Fig. 2.

Configuration of polarimetric current sensor.

Fig. 3.
Fig. 3.

Effect of alignment error on this sensor.

Fig. 4.
Fig. 4.

Elimination of alignment error: (a) θ=48deg and (b) θ=52deg.

Fig. 5.
Fig. 5.

Correction process of parameter t.

Fig. 6.
Fig. 6.

Performance test results.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Linm=[cos(km)sin(km)sin(km)cos(km)],
Lp=[1000],Lf1=[cosFsinFsinFcosF],Lm=[1001],Lpc=[cos(θ)sin(θ)sin(θ)cos(θ)],
Eo=Lout4·Lpc·Lout3·Lout2·Lf2·Lm·Lf1·Lin2·Lin1·Lp·Ei=[cos(2F+θk)sin(2F+θk)]·Ex,
[Jx1Jy1]=[1+cos(4F+2θ2k)1cos(4F+2θ2k)]·Ex22.
[Jx0Jy0]=[1+cos(2θ2k)1cos(2θ2k)]·Ex22.
D=(Jy1Jy0)/Jy0(Jx1Jx0)/Jx0=4·cos(2θ2k)cos(4F+2θ2k)1cos(4θ4k).
t=arccos(Jy0Jx0Jy0+Jx0).

Metrics