Abstract

We report the fabrication and first demonstration of an electron beam position monitor for a dielectric microaccelerator. This device is fabricated on a fused silica substrate using standard optical lithography techniques and uses the radiated optical wavelength to measure the electron beam position with a resolution of 10 μm, or 7% of the electron beam spot size. This device also measures the electron beam spot size in one dimension.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, Nature 503, 91 (2013).
    [CrossRef]
  2. J. Breuer and P. Hommelhoff, Phys. Rev. Lett. 111, 134803 (2013).
    [CrossRef]
  3. T. Plettner, R. L. Byer, C. McGuinness, and P. Hommelhoff, Phys. Rev. Spec. Top.—Accel. Beams 12, 101302 (2009).
  4. K. Soong and R. L. Byer, Opt. Lett. 37, 975 (2012).
    [CrossRef]
  5. T. Plettner, P. P. Lu, and R. L. Byer, Phys. Rev. Spec. Top.—Accel. Beams 9, 111301 (2006).
  6. L. Schachter, R. Byer, and R. Siemann, Phys. Rev. E 68, 036502 (2003).
    [CrossRef]
  7. R. Siemann, Phys. Rev. Spec. Top.—Accel. Beams 7, 061303 (2004).
  8. M. Kruger, M. Schenk, and P. Hommelhoff, Nature 475, 78 (2011).
    [CrossRef]

2013

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, Nature 503, 91 (2013).
[CrossRef]

J. Breuer and P. Hommelhoff, Phys. Rev. Lett. 111, 134803 (2013).
[CrossRef]

2012

2011

M. Kruger, M. Schenk, and P. Hommelhoff, Nature 475, 78 (2011).
[CrossRef]

2009

T. Plettner, R. L. Byer, C. McGuinness, and P. Hommelhoff, Phys. Rev. Spec. Top.—Accel. Beams 12, 101302 (2009).

2006

T. Plettner, P. P. Lu, and R. L. Byer, Phys. Rev. Spec. Top.—Accel. Beams 9, 111301 (2006).

2004

R. Siemann, Phys. Rev. Spec. Top.—Accel. Beams 7, 061303 (2004).

2003

L. Schachter, R. Byer, and R. Siemann, Phys. Rev. E 68, 036502 (2003).
[CrossRef]

Breuer, J.

J. Breuer and P. Hommelhoff, Phys. Rev. Lett. 111, 134803 (2013).
[CrossRef]

Byer, R.

L. Schachter, R. Byer, and R. Siemann, Phys. Rev. E 68, 036502 (2003).
[CrossRef]

Byer, R. L.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, Nature 503, 91 (2013).
[CrossRef]

K. Soong and R. L. Byer, Opt. Lett. 37, 975 (2012).
[CrossRef]

T. Plettner, R. L. Byer, C. McGuinness, and P. Hommelhoff, Phys. Rev. Spec. Top.—Accel. Beams 12, 101302 (2009).

T. Plettner, P. P. Lu, and R. L. Byer, Phys. Rev. Spec. Top.—Accel. Beams 9, 111301 (2006).

Colby, E. R.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, Nature 503, 91 (2013).
[CrossRef]

Cowan, B.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, Nature 503, 91 (2013).
[CrossRef]

England, R. J.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, Nature 503, 91 (2013).
[CrossRef]

Hommelhoff, P.

J. Breuer and P. Hommelhoff, Phys. Rev. Lett. 111, 134803 (2013).
[CrossRef]

M. Kruger, M. Schenk, and P. Hommelhoff, Nature 475, 78 (2011).
[CrossRef]

T. Plettner, R. L. Byer, C. McGuinness, and P. Hommelhoff, Phys. Rev. Spec. Top.—Accel. Beams 12, 101302 (2009).

Kruger, M.

M. Kruger, M. Schenk, and P. Hommelhoff, Nature 475, 78 (2011).
[CrossRef]

Leedle, K. J.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, Nature 503, 91 (2013).
[CrossRef]

Lu, P. P.

T. Plettner, P. P. Lu, and R. L. Byer, Phys. Rev. Spec. Top.—Accel. Beams 9, 111301 (2006).

McGuinness, C.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, Nature 503, 91 (2013).
[CrossRef]

T. Plettner, R. L. Byer, C. McGuinness, and P. Hommelhoff, Phys. Rev. Spec. Top.—Accel. Beams 12, 101302 (2009).

McNeur, J.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, Nature 503, 91 (2013).
[CrossRef]

Montazeri, B.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, Nature 503, 91 (2013).
[CrossRef]

Peralta, E. A.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, Nature 503, 91 (2013).
[CrossRef]

Plettner, T.

T. Plettner, R. L. Byer, C. McGuinness, and P. Hommelhoff, Phys. Rev. Spec. Top.—Accel. Beams 12, 101302 (2009).

T. Plettner, P. P. Lu, and R. L. Byer, Phys. Rev. Spec. Top.—Accel. Beams 9, 111301 (2006).

Schachter, L.

L. Schachter, R. Byer, and R. Siemann, Phys. Rev. E 68, 036502 (2003).
[CrossRef]

Schenk, M.

M. Kruger, M. Schenk, and P. Hommelhoff, Nature 475, 78 (2011).
[CrossRef]

Schwartz, B.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, Nature 503, 91 (2013).
[CrossRef]

Siemann, R.

R. Siemann, Phys. Rev. Spec. Top.—Accel. Beams 7, 061303 (2004).

L. Schachter, R. Byer, and R. Siemann, Phys. Rev. E 68, 036502 (2003).
[CrossRef]

Soong, K.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, Nature 503, 91 (2013).
[CrossRef]

K. Soong and R. L. Byer, Opt. Lett. 37, 975 (2012).
[CrossRef]

Sozer, E. B.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, Nature 503, 91 (2013).
[CrossRef]

Travish, G.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, Nature 503, 91 (2013).
[CrossRef]

Walz, D.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, Nature 503, 91 (2013).
[CrossRef]

Wu, Z.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, Nature 503, 91 (2013).
[CrossRef]

Nature

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, Nature 503, 91 (2013).
[CrossRef]

M. Kruger, M. Schenk, and P. Hommelhoff, Nature 475, 78 (2011).
[CrossRef]

Opt. Lett.

Phys. Rev. E

L. Schachter, R. Byer, and R. Siemann, Phys. Rev. E 68, 036502 (2003).
[CrossRef]

Phys. Rev. Lett.

J. Breuer and P. Hommelhoff, Phys. Rev. Lett. 111, 134803 (2013).
[CrossRef]

Phys. Rev. Spec. Top.—Accel. Beams

T. Plettner, R. L. Byer, C. McGuinness, and P. Hommelhoff, Phys. Rev. Spec. Top.—Accel. Beams 12, 101302 (2009).

T. Plettner, P. P. Lu, and R. L. Byer, Phys. Rev. Spec. Top.—Accel. Beams 9, 111301 (2006).

R. Siemann, Phys. Rev. Spec. Top.—Accel. Beams 7, 061303 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Conceptual depiction of the BPM operation. (Left) The characteristic clam-shell geometry of the BPM structure. (Right) Each colored arrow represents a different position of the electron beam. The BPM will radiate at a position-dependent wavelength, which can be used to measure the position of the electron beam.

Fig. 2.
Fig. 2.

Microscope/SEM images of a fabricated BPM half structure. Insets show magnified versions of the regions indicated by the white squares. False color SEM images depict different grating periods at opposite ends of the structure.

Fig. 3.
Fig. 3.

Schematic (not to scale) showing the critical components of the electron beam experimental setup and the photon optics setup.

Fig. 4.
Fig. 4.

Demonstration of the BPM. (a) Two distinct radiation spectrums generated by two independent electron pulses demonstrating the BPM’s capability to encode beam position to a radiated wavelength. (b) The peak of the BPM signal as a function of beam position. The highly linear response of the BPM makes it ideal for a position sensor. The two arrows in the plot correspond to the two datasets in (a). For both plots, the markers denote measured values while error bars indicate the 68% confidence interval.

Fig. 5.
Fig. 5.

(a) Demonstration of the BPM as a beam profiler. The measured spectral width of the BPM signal shows a strong correlation with the input electron beam spot size. The solid curve shows the predicted relationship, while the dashed line denotes the best and worst case spectrograph resolution scenarios. (b) Verification of polarization dependence. The measured data shows the cosine-squared dependency predicted by theory (solid curve). Markers denote experimental data; error bars indicate a 68% confidence interval.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Np=GNeqLλghc,whereG=qcZλg2.

Metrics