Abstract

We demonstrate swept source optical coherence tomography (OCT) imaging of contact lenses (CLs) in a wet cell and comprehensive quantitative characterization of CLs from volumetric OCT datasets. The approach is based on a technique developed for lens autopositioning and autoleveling enabled by lateral capillary interactions between the wet cell wall and the lens floating on the liquid surface. The demonstrated OCT imaging has enhanced contrast due to the application of a scattering medium and it improves visualization of both CL interfaces and edges. We also present precise and accurate three-dimensional metrology of soft and rigid CLs based on the OCT data. The accuracy and precision of the extracted lens parameters are compared with the manufacturer’s specifications. The presented methodology facilitates industrial inspection methods of the CLs.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Forest, C. R. Canizares, D. R. Neal, M. McGuirk, and M. L. Schattenburg, Opt. Eng. 43, 742 (2004).
    [CrossRef]
  2. International Organization for Standarization, , “Ophthalmic optics—contact lenses—Part 3: measurement methods,” (ISO, 2006).
  3. S. Plainis, D. A. Atchison, and W. N. Charman, Optom. Vis. Sci. 90, 1066 (2013).
    [CrossRef]
  4. M. J. Giraldez, C. Garcia-Resua, M. Lira, M. E. R. Oliveira, and E. Yebra-Pimentel, Ophthal. Physiol. Opt. 30, 289 (2010).
    [CrossRef]
  5. W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography: Technology and Applications (Springer-Verlag, 2008).
  6. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, Opt. Lett. 38, 673 (2013).
    [CrossRef]
  7. M. Wojtkowski, Appl. Opt. 49, D30 (2010).
    [CrossRef]
  8. B. R. Davidson and J. K. Barton, J. Biomed. Opt. 15, 016009 (2010).
    [CrossRef]
  9. P. Peruzzo, A. Defina, H. M. Nepf, and R. Stocker, Phys. Rev. Lett. 111, 164501 (2013).
    [CrossRef]
  10. P. A. Kralchevsky and K. Nagayama, Langmuir 10, 23 (1994).
    [CrossRef]
  11. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, Opt. Express 18, 2782 (2010).
    [CrossRef]
  12. R. C. Lin, M. A. Shure, A. M. Rollins, J. A. Izatt, and D. Huang, Opt. Lett. 29, 83 (2004).
    [CrossRef]

2013

S. Plainis, D. A. Atchison, and W. N. Charman, Optom. Vis. Sci. 90, 1066 (2013).
[CrossRef]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, Opt. Lett. 38, 673 (2013).
[CrossRef]

P. Peruzzo, A. Defina, H. M. Nepf, and R. Stocker, Phys. Rev. Lett. 111, 164501 (2013).
[CrossRef]

2010

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, Opt. Express 18, 2782 (2010).
[CrossRef]

M. Wojtkowski, Appl. Opt. 49, D30 (2010).
[CrossRef]

B. R. Davidson and J. K. Barton, J. Biomed. Opt. 15, 016009 (2010).
[CrossRef]

M. J. Giraldez, C. Garcia-Resua, M. Lira, M. E. R. Oliveira, and E. Yebra-Pimentel, Ophthal. Physiol. Opt. 30, 289 (2010).
[CrossRef]

2004

R. C. Lin, M. A. Shure, A. M. Rollins, J. A. Izatt, and D. Huang, Opt. Lett. 29, 83 (2004).
[CrossRef]

C. R. Forest, C. R. Canizares, D. R. Neal, M. McGuirk, and M. L. Schattenburg, Opt. Eng. 43, 742 (2004).
[CrossRef]

1994

P. A. Kralchevsky and K. Nagayama, Langmuir 10, 23 (1994).
[CrossRef]

Atchison, D. A.

S. Plainis, D. A. Atchison, and W. N. Charman, Optom. Vis. Sci. 90, 1066 (2013).
[CrossRef]

Barton, J. K.

B. R. Davidson and J. K. Barton, J. Biomed. Opt. 15, 016009 (2010).
[CrossRef]

Cable, A. E.

Canizares, C. R.

C. R. Forest, C. R. Canizares, D. R. Neal, M. McGuirk, and M. L. Schattenburg, Opt. Eng. 43, 742 (2004).
[CrossRef]

Charman, W. N.

S. Plainis, D. A. Atchison, and W. N. Charman, Optom. Vis. Sci. 90, 1066 (2013).
[CrossRef]

Davidson, B. R.

B. R. Davidson and J. K. Barton, J. Biomed. Opt. 15, 016009 (2010).
[CrossRef]

Defina, A.

P. Peruzzo, A. Defina, H. M. Nepf, and R. Stocker, Phys. Rev. Lett. 111, 164501 (2013).
[CrossRef]

Forest, C. R.

C. R. Forest, C. R. Canizares, D. R. Neal, M. McGuirk, and M. L. Schattenburg, Opt. Eng. 43, 742 (2004).
[CrossRef]

Fujimoto, J. G.

Garcia-Resua, C.

M. J. Giraldez, C. Garcia-Resua, M. Lira, M. E. R. Oliveira, and E. Yebra-Pimentel, Ophthal. Physiol. Opt. 30, 289 (2010).
[CrossRef]

Giraldez, M. J.

M. J. Giraldez, C. Garcia-Resua, M. Lira, M. E. R. Oliveira, and E. Yebra-Pimentel, Ophthal. Physiol. Opt. 30, 289 (2010).
[CrossRef]

Grulkowski, I.

Huang, D.

Izatt, J. A.

Jayaraman, V.

Jiang, J.

Kralchevsky, P. A.

P. A. Kralchevsky and K. Nagayama, Langmuir 10, 23 (1994).
[CrossRef]

Lin, R. C.

Lira, M.

M. J. Giraldez, C. Garcia-Resua, M. Lira, M. E. R. Oliveira, and E. Yebra-Pimentel, Ophthal. Physiol. Opt. 30, 289 (2010).
[CrossRef]

Liu, J. J.

Marcos, S.

McGuirk, M.

C. R. Forest, C. R. Canizares, D. R. Neal, M. McGuirk, and M. L. Schattenburg, Opt. Eng. 43, 742 (2004).
[CrossRef]

Nagayama, K.

P. A. Kralchevsky and K. Nagayama, Langmuir 10, 23 (1994).
[CrossRef]

Neal, D. R.

C. R. Forest, C. R. Canizares, D. R. Neal, M. McGuirk, and M. L. Schattenburg, Opt. Eng. 43, 742 (2004).
[CrossRef]

Nepf, H. M.

P. Peruzzo, A. Defina, H. M. Nepf, and R. Stocker, Phys. Rev. Lett. 111, 164501 (2013).
[CrossRef]

Oliveira, M. E. R.

M. J. Giraldez, C. Garcia-Resua, M. Lira, M. E. R. Oliveira, and E. Yebra-Pimentel, Ophthal. Physiol. Opt. 30, 289 (2010).
[CrossRef]

Ortiz, S.

Pascual, D.

Peruzzo, P.

P. Peruzzo, A. Defina, H. M. Nepf, and R. Stocker, Phys. Rev. Lett. 111, 164501 (2013).
[CrossRef]

Plainis, S.

S. Plainis, D. A. Atchison, and W. N. Charman, Optom. Vis. Sci. 90, 1066 (2013).
[CrossRef]

Potsaid, B.

Remon, L.

Rollins, A. M.

Schattenburg, M. L.

C. R. Forest, C. R. Canizares, D. R. Neal, M. McGuirk, and M. L. Schattenburg, Opt. Eng. 43, 742 (2004).
[CrossRef]

Shure, M. A.

Siedlecki, D.

Stocker, R.

P. Peruzzo, A. Defina, H. M. Nepf, and R. Stocker, Phys. Rev. Lett. 111, 164501 (2013).
[CrossRef]

Wojtkowski, M.

Yebra-Pimentel, E.

M. J. Giraldez, C. Garcia-Resua, M. Lira, M. E. R. Oliveira, and E. Yebra-Pimentel, Ophthal. Physiol. Opt. 30, 289 (2010).
[CrossRef]

Appl. Opt.

J. Biomed. Opt.

B. R. Davidson and J. K. Barton, J. Biomed. Opt. 15, 016009 (2010).
[CrossRef]

Langmuir

P. A. Kralchevsky and K. Nagayama, Langmuir 10, 23 (1994).
[CrossRef]

Ophthal. Physiol. Opt.

M. J. Giraldez, C. Garcia-Resua, M. Lira, M. E. R. Oliveira, and E. Yebra-Pimentel, Ophthal. Physiol. Opt. 30, 289 (2010).
[CrossRef]

Opt. Eng.

C. R. Forest, C. R. Canizares, D. R. Neal, M. McGuirk, and M. L. Schattenburg, Opt. Eng. 43, 742 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Optom. Vis. Sci.

S. Plainis, D. A. Atchison, and W. N. Charman, Optom. Vis. Sci. 90, 1066 (2013).
[CrossRef]

Phys. Rev. Lett.

P. Peruzzo, A. Defina, H. M. Nepf, and R. Stocker, Phys. Rev. Lett. 111, 164501 (2013).
[CrossRef]

Other

International Organization for Standarization, , “Ophthalmic optics—contact lenses—Part 3: measurement methods,” (ISO, 2006).

W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography: Technology and Applications (Springer-Verlag, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Lateral capillary interaction between the CL and cuvette wall. A, Top: mutual attraction occurs when the meniscus angles have the same sign; bottom: lens repulsion from the wall occurs when the meniscus angles have opposite signs. B, Simulation of the capillary attraction and repulsion energy versus the distance between the CL and cuvette wall.

Fig. 2.
Fig. 2.

Experimental evidence of the capillary forces between cuvette walls and a CL. Cross-sectional images of partially filled and overfilled cuvette showing A, concave and D, convex meniscus formed at the cuvette walls. Cross sections B and E and en-face projection images C and F showing attraction and repulsion effects, respectively. (W, cuvette wall; L, CL).

Fig. 3.
Fig. 3.

Experimental setup. A, SS-OCT system for CL imaging and metrology. MZI, Mach–Zehnder interferometer; XY, beam scanning head. B, Radial 3D scan protocol with averaging.

Fig. 4.
Fig. 4.

A, Soft CL edge wrapping effect (top) is avoided by careful adjustment of the amount of scattering fluid (bottom). B, Cross-sectional image of the CL with segmented surfaces. C, The CL interfaces after field curvature and light refraction correction.

Fig. 5.
Fig. 5.

Quantitative CL evaluation. A, Averaged thickness map and B, standard deviation map of the thickness calculated from 10 measurements of the spherical soft CL. C, Thickness map of the toric soft CL with clearly visible bottom weighting ballast with the axis rotated by α=8.9deg. D, Astigmatism of the toric soft CL.

Tables (2)

Tables Icon

Table 1. Refractive Indices at 1310 nm for the Saline Solution of Intralipid and the Soft CL Materials: Hilafilcon B (59% Water Content), Comfilcon A (48% Water Content), and Enflufocon A (<1% Water Content)

Tables Icon

Table 2. Parameters of CLs Measured with the Swept Source OCT Systema

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E=C·sin(φc)·sin(φ1)·K0(d),
P=(n1)[1R1+1R2(n1)*CTn*R1*R2],

Metrics