Abstract

By employing large hollow-core Kagome fiber in a double-clad configuration, the performance of a potentially rubidium vapor-based fiber laser is explored. The absorbed power and laser efficiency versus pump power are calculated utilizing a simple laser model. Our results show that a Kagome-based high-power fiber laser is feasible provided that the value of the collisional fine-structure mixing rate will be elevated by increasing the ambient temperature or by increasing the helium pressure.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. F. Krupke, “Diode pumped alkali laser,” U.S. patent No. 6,643,311 (November4, 2003).
  2. A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
    [CrossRef]
  3. S. A. Payne, R. J. Beach, J. w. Dawson, and W. F. Krupke, “Diode pumped alkali vapor fiber laser,” U.S. patent No. 7,082,148B2 (July 25, 2006).
  4. D. J. Richardson, J. Nilsson, and W. A. Clarkson, J. Opt. Soc. Am. B 27, B63 (2010).
    [CrossRef]
  5. A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, Opt. Express 16, 18976 (2008).
    [CrossRef]
  6. S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, Phys. Rev. Lett. 97, 023603 (2006).
    [CrossRef]
  7. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, Opt. Lett. 28, 2336 (2003).
    [CrossRef]
  8. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, Opt. Lett. 36, 669 (2011).
    [CrossRef]
  9. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, J. Opt. Soc. Am. B 21, 2151 (2004).
    [CrossRef]
  10. C. C. Davis, Lasers and Electro-Optics (Cambridge, 1996), Chap. II.
  11. D. A. Steck, “Rubidium 85 D Line Data,” available online at http://steck.us/alkalidata/rubidium85numbers.pdf .
  12. M. A. Gearba, J. F. Sell, B. M. Patterson, R. Lloyd, J. Plyler, and R. J. Knize, Opt. Lett. 37, 1637 (2012).
    [CrossRef]
  13. G. D. Hager and G. P. Perram, Appl. Phys. B 101, 45 (2010).
    [CrossRef]
  14. M. V. Romalis, E. Miron, and G. D. Gates, Phys. Rev. A 56, 4569 (1997).
    [CrossRef]
  15. E. Speller, B. Staudenmayer, and V. Kempter, Z. Phys. A 291, 311 (1979).
    [CrossRef]
  16. N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, J. Phys. B 42, 245401 (2009).

2012 (2)

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

M. A. Gearba, J. F. Sell, B. M. Patterson, R. Lloyd, J. Plyler, and R. J. Knize, Opt. Lett. 37, 1637 (2012).
[CrossRef]

2011 (1)

2010 (2)

2009 (1)

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, J. Phys. B 42, 245401 (2009).

2008 (1)

2006 (1)

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

2004 (1)

2003 (1)

1997 (1)

M. V. Romalis, E. Miron, and G. D. Gates, Phys. Rev. A 56, 4569 (1997).
[CrossRef]

1979 (1)

E. Speller, B. Staudenmayer, and V. Kempter, Z. Phys. A 291, 311 (1979).
[CrossRef]

Beach, R. J.

R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, J. Opt. Soc. Am. B 21, 2151 (2004).
[CrossRef]

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, Opt. Lett. 28, 2336 (2003).
[CrossRef]

S. A. Payne, R. J. Beach, J. w. Dawson, and W. F. Krupke, “Diode pumped alkali vapor fiber laser,” U.S. patent No. 7,082,148B2 (July 25, 2006).

Benabid, F.

Bhagwat, A. R.

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, Opt. Express 16, 18976 (2008).
[CrossRef]

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

Bogachev, A. V.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

Clarkson, W. A.

Couny, F.

Davis, C. C.

C. C. Davis, Lasers and Electro-Optics (Cambridge, 1996), Chap. II.

Dawson, J. w.

S. A. Payne, R. J. Beach, J. w. Dawson, and W. F. Krupke, “Diode pumped alkali vapor fiber laser,” U.S. patent No. 7,082,148B2 (July 25, 2006).

Dubinskii, M. A.

Dudov, A. M.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

Gaeta, A. L.

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, Opt. Express 16, 18976 (2008).
[CrossRef]

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

Garanin, S. G.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

Gates, G. D.

M. V. Romalis, E. Miron, and G. D. Gates, Phys. Rev. A 56, 4569 (1997).
[CrossRef]

Gearba, M. A.

Ghosh, S.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

Goh, S.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

Hager, G. D.

G. D. Hager and G. P. Perram, Appl. Phys. B 101, 45 (2010).
[CrossRef]

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, J. Phys. B 42, 245401 (2009).

Hostutler, D. A.

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, J. Phys. B 42, 245401 (2009).

Kanz, V. K.

Kempter, V.

E. Speller, B. Staudenmayer, and V. Kempter, Z. Phys. A 291, 311 (1979).
[CrossRef]

Kirby, B. J.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

Knize, R. J.

Krupke, W. F.

R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, J. Opt. Soc. Am. B 21, 2151 (2004).
[CrossRef]

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, Opt. Lett. 28, 2336 (2003).
[CrossRef]

S. A. Payne, R. J. Beach, J. w. Dawson, and W. F. Krupke, “Diode pumped alkali vapor fiber laser,” U.S. patent No. 7,082,148B2 (July 25, 2006).

W. F. Krupke, “Diode pumped alkali laser,” U.S. patent No. 6,643,311 (November4, 2003).

Kulikov, S. M.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

Lloyd, R.

Londero, P.

Merkle, L. D.

Mikaelian, G. T.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

Miron, E.

M. V. Romalis, E. Miron, and G. D. Gates, Phys. Rev. A 56, 4569 (1997).
[CrossRef]

Nilsson, J.

Panarin, V. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

Patterson, B. M.

Pautov, V. O.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

Payne, S. A.

R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, J. Opt. Soc. Am. B 21, 2151 (2004).
[CrossRef]

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, Opt. Lett. 28, 2336 (2003).
[CrossRef]

S. A. Payne, R. J. Beach, J. w. Dawson, and W. F. Krupke, “Diode pumped alkali vapor fiber laser,” U.S. patent No. 7,082,148B2 (July 25, 2006).

Perram, G. P.

G. D. Hager and G. P. Perram, Appl. Phys. B 101, 45 (2010).
[CrossRef]

Plyler, J.

Renshaw, C. K.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

Richardson, D. J.

Roberts, P. J.

Romalis, M. V.

M. V. Romalis, E. Miron, and G. D. Gates, Phys. Rev. A 56, 4569 (1997).
[CrossRef]

Rudolph, W.

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, J. Phys. B 42, 245401 (2009).

Rus, A. V.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

Sell, J. F.

Slepkov, A. D.

Speller, E.

E. Speller, B. Staudenmayer, and V. Kempter, Z. Phys. A 291, 311 (1979).
[CrossRef]

Staudenmayer, B.

E. Speller, B. Staudenmayer, and V. Kempter, Z. Phys. A 291, 311 (1979).
[CrossRef]

Sukharev, S. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

Venkataraman, V.

Wang, Y. Y.

Wheeler, N. V.

Yeroshenko, V. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

Zameroski, N. D.

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, J. Phys. B 42, 245401 (2009).

Appl. Phys. B (1)

G. D. Hager and G. P. Perram, Appl. Phys. B 101, 45 (2010).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. B (1)

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, J. Phys. B 42, 245401 (2009).

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (1)

M. V. Romalis, E. Miron, and G. D. Gates, Phys. Rev. A 56, 4569 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

Quantum Electron. (1)

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

Z. Phys. A (1)

E. Speller, B. Staudenmayer, and V. Kempter, Z. Phys. A 291, 311 (1979).
[CrossRef]

Other (4)

W. F. Krupke, “Diode pumped alkali laser,” U.S. patent No. 6,643,311 (November4, 2003).

S. A. Payne, R. J. Beach, J. w. Dawson, and W. F. Krupke, “Diode pumped alkali vapor fiber laser,” U.S. patent No. 7,082,148B2 (July 25, 2006).

C. C. Davis, Lasers and Electro-Optics (Cambridge, 1996), Chap. II.

D. A. Steck, “Rubidium 85 D Line Data,” available online at http://steck.us/alkalidata/rubidium85numbers.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Gain versus the Kagome fiber’s d/Λ structural property (d is hole diameter and Λ is the spacing between the air holes) for Λ=18μm [8]. (b) BPM simulated mode profile at the output of the fiber laser. The dashed line represents the hollow core boundary.

Fig. 2.
Fig. 2.

Absorbed pump power, output power, and laser efficiency (relative to launched power) versus the diode pump power. The pump spectral profiles after a single pass and double pass through the fiber are shown in the small graph for 60 W pump power.

Fig. 3.
Fig. 3.

Longitudinally averaged population densities n1, n2, n3 (energy levels 52S1/2, 52P1/2, and 52P3/2, respectively) versus pump power. n1 depletion occurs at high pump power due to the low n3n2 collisional rate.

Fig. 4.
Fig. 4.

Output power and absorbed pump power versus ambient temperature at 200 W pump power. The Rb density rise with ambient temperature is shown to improve the laser efficiency.

Tables (1)

Tables Icon

Table 1. Model Parameters

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

G=exp2gL=1Tl2·Roc,
n(ν=ν0,D1)n0(1ig(ν=ν0,D1)c4n0πν0),
nRb(T)=133.32kBT·10(1.1934040T)cm3,
γP23/2P21/2(T)=σHe,P23/2P21/2(T294)1.33vHerelnHe+1.48·1032·nHe2(T294)1.71+σEt,P23/2P21/2vEtrelnEt,γP23/2P21/2(T)=γP23/2P21/2·2exp(ΔEkBT),
vXrel=8kBTπ(1MX+1MRb)·100cms,
σD2,eff(λ)=σD2Hebroadened1+[2(λλD2)ΔλD2FWHM]·AcoreAclad,
σD1,eff(λ)=σD1Hebroadened1+[2(λλD1)ΔλD1FWHM]·ηmode,
dn1dt=Γp+ΓL+n2(1τD1+Q21)+n3(1τD2+Q31),dn2dt=ΓL+γP23/2P21/2(T){(n3n2)[2exp(ΔEkBT)1]n2}n2(1τD1+Q21),dn3dt=ΓPγP23/2P21/2(T){(n3n2)[2exp(ΔEkBT)1]n2}n3(1τD2+Q31),Γp=ηdelVLdλdPp(λ)dλλhc{1exp[(n1n32)σD2,eff(λ)L]},×{1+Rpexp[(n1n32)σD2,eff(λ)L]},ΓL=PLVLλD1hcROC1ROC{exp[(n2n1)σD1,eff(λ)L]1},×{1+Tl2exp[(n2n1)σD1,eff(λ)L]},nRb=n1+n2+n3,Q31=Q21=nEtvEtrelσquenchingEt+nHevHerelσquenchingHe,
Pp(λ)=2πΔλpPp/1+(2(λλp)Δλp)2,

Metrics