Abstract

We systematically investigate the design of two-dimensional silver (Ag) hemisphere arrays on crystalline silicon (c-Si) ultrathin film solar cells for plasmonic light trapping. The absorption in ultrathin films is governed by the excitation of Fabry–Perot TEMm modes. We demonstrate that metal hemispheres can enhance absorption in the films by (1) coupling light to c-Si film waveguide modes and (2) exciting localized surface plasmon resonances (LSPRs). We show that hemisphere arrays allow light to couple to fundamental TEm and TMm waveguide modes in c-Si film as well as higher-order versions of these modes. The near-field light concentration of LSPRs also may increase absorption in the c-Si film, though these resonances are associated with significant parasitic absorption in the metal. We illustrate how Ag plasmonic hemispheres may be utilized for light trapping with 22% enhancement in short-circuit current density compared with that of a bare 100 nm thick c-Si ultrathin film solar cell.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, Nano Lett. 8, 4391 (2008).
    [CrossRef]
  2. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
    [CrossRef]
  3. I. Kim, T. S. Lee, D. S. Jeong, W. S. Lee, W. M. Kim, and K.-S. Lee, Opt. Express 21, A669 (2013).
    [CrossRef]
  4. K. R. Catchpole and A. Polman, Opt. Express 16, 21793 (2008).
    [CrossRef]
  5. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
    [CrossRef]
  6. A. Centeno, J. Breeze, B. Ahmed, H. Reehal, and N. Alford, Opt. Lett. 35, 76 (2010).
    [CrossRef]
  7. L. Chen, W. C. H. Choy, and W. E. I. Sha, Appl. Phys. Lett. 102, 251112 (2013).
    [CrossRef]
  8. S. Zivanovic, K. Yee, and K. Mei, IEEE Trans. Microwave Theor. Tech. 39, 471 (1991).
    [CrossRef]
  9. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997).
  10. Y. Yu and L. Cao, Opt. Express 20, 13847 (2012).
    [CrossRef]

2013 (2)

L. Chen, W. C. H. Choy, and W. E. I. Sha, Appl. Phys. Lett. 102, 251112 (2013).
[CrossRef]

I. Kim, T. S. Lee, D. S. Jeong, W. S. Lee, W. M. Kim, and K.-S. Lee, Opt. Express 21, A669 (2013).
[CrossRef]

2012 (1)

2010 (1)

2009 (1)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
[CrossRef]

2008 (2)

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, Nano Lett. 8, 4391 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, Opt. Express 16, 21793 (2008).
[CrossRef]

2007 (1)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

1991 (1)

S. Zivanovic, K. Yee, and K. Mei, IEEE Trans. Microwave Theor. Tech. 39, 471 (1991).
[CrossRef]

Ahmed, B.

Alford, N.

Atwater, H. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, Nano Lett. 8, 4391 (2008).
[CrossRef]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
[CrossRef]

Breeze, J.

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
[CrossRef]

Cao, L.

Catchpole, K. R.

K. R. Catchpole and A. Polman, Opt. Express 16, 21793 (2008).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Centeno, A.

Chen, L.

L. Chen, W. C. H. Choy, and W. E. I. Sha, Appl. Phys. Lett. 102, 251112 (2013).
[CrossRef]

Choy, W. C. H.

L. Chen, W. C. H. Choy, and W. E. I. Sha, Appl. Phys. Lett. 102, 251112 (2013).
[CrossRef]

Ferry, V. E.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, Nano Lett. 8, 4391 (2008).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Jeong, D. S.

Kim, I.

Kim, W. M.

Lee, K.-S.

Lee, T. S.

Lee, W. S.

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
[CrossRef]

Mei, K.

S. Zivanovic, K. Yee, and K. Mei, IEEE Trans. Microwave Theor. Tech. 39, 471 (1991).
[CrossRef]

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, Nano Lett. 8, 4391 (2008).
[CrossRef]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997).

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Polman, A.

Reehal, H.

Sha, W. E. I.

L. Chen, W. C. H. Choy, and W. E. I. Sha, Appl. Phys. Lett. 102, 251112 (2013).
[CrossRef]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, Nano Lett. 8, 4391 (2008).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
[CrossRef]

Yee, K.

S. Zivanovic, K. Yee, and K. Mei, IEEE Trans. Microwave Theor. Tech. 39, 471 (1991).
[CrossRef]

Yu, Y.

Zivanovic, S.

S. Zivanovic, K. Yee, and K. Mei, IEEE Trans. Microwave Theor. Tech. 39, 471 (1991).
[CrossRef]

Adv. Mater. (1)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

L. Chen, W. C. H. Choy, and W. E. I. Sha, Appl. Phys. Lett. 102, 251112 (2013).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

S. Zivanovic, K. Yee, and K. Mei, IEEE Trans. Microwave Theor. Tech. 39, 471 (1991).
[CrossRef]

J. Appl. Phys. (1)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Nano Lett. (1)

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, Nano Lett. 8, 4391 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the plasmonic solar cell structure. A square array of hemispheres of diameter d and pitch a sits on top of a c-Si thin film of thickness tSi on a perfect backreflector.

Fig. 2.
Fig. 2.

(a) Absorption spectra of tSi=100nm c-Si film on a perfect backreflector. The FP modes are marked with white dashed lines and correspond to the TEM2 and TEM1 modes at λ=410 and 550 nm, respectively. (b) Electric field intensity |E(r,λ)|2 of the (i) TEM2 and (ii) TEM1 modes. The c-Si layer is the region z=0 to 100 nm. (c) Absorption coefficient of bulk c-Si from [9].

Fig. 3.
Fig. 3.

Absorption in (a) c-Si and (b) Ag hemispheres for a 2D Ag hemisphere array of diameter d=170nm and different pitches a from 170 to 400 nm on tSi=100nm c-Si thin film on a perfect backreflector. (c) Absorption as a function of the wavelength for 100 nm thick c-Si layer with and without Ag hemispheres at a=245nm (indicated by the white dashed–dotted line in (a). (d) Absorption enhancement g(λ) due to the hemispheres as a function of wavelength.

Fig. 4.
Fig. 4.

Electric field intensity profile |E(r,λ)|2 at λ = (a) 620, (b) 680, (c) 750 nm, and (d) 1000 nm. The top row shows a slice in the xy plane at z=50nm, and the bottom row shows an xy slice at y=0. (a) and (c) are TM0 modes, while (b) is a TE0 mode. (d) is an LSPR. All the plots have been normalized to the same color bar.

Fig. 5.
Fig. 5.

Absorption spectra of d=170nm and a=245nm Ag hemisphere array on tSi=100nm thin film on a perfect backreflector as a function of the wavelength for (a) TE-incident light and (b) TM-incident light. Waveguide modes are indicated by white dashed lines. (c) Short-circuit current density Jsc as a function of incident angle.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A(r,λ)=12real{∇⃗·P}Pin(λ)=12ϵi(λ)ω(λ)|E(r,λ)|2Pin(λ),
Jsc=q0λgI(λ)λA(λ)dλ,
tan(nSiktSi)=nSii,
kSicot(kSitSi)=ikx,
ikSitan(kSitSi)=nSi2kx.

Metrics