Abstract

In this Letter, we demonstrate the first high-speed piezoelectric axicon mirror. We achieve a usable aperture of 10 mm up to the maximum radius of the robust, 300 μm thick mirror substrate using a floating boundary condition. The highly aspheric, conical shape is programmed into the device by ring-shaped electrodes, for which we have developed an automated optimization strategy for their individual electrode potentials. In addition, we developed a simple control circuit, in which the conical profile can be programmed and adjusted with just one control signal. The device is fabricated by rapid prototyping to avoid cleanroom processing. The tunable mirror features a resonance frequency of 10 kHz and a static deflection of 5.8 μm at a surface deviation of 63 nm, and is thus able to generate a quasi-Bessel beam.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. McGloin and K. Dholakia, Contemp. Phys. 46, 15 (2005).
    [CrossRef]
  2. M. Bock, S. K. Das, C. Fischer, M. Diehl, P. Börner, and R. Grunwald, Opt. Lett. 37, 1154 (2012).
    [CrossRef]
  3. X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, and C. T. A. Brown, Appl. Phys. Lett. 91, 53902 (2007).
    [CrossRef]
  4. F. Courvoisier, P.-A. Lacourt, M. Jacquot, M. K. Bhuyan, L. Furfaro, and J. M. Dudley, Opt. Lett. 34, 3163 (2009).
    [CrossRef]
  5. F. Fahrbach, P. Simon, and A. Rohrbach, Nat. Photonics 4, 780 (2010).
    [CrossRef]
  6. N. Weber, D. Spether, A. Seifert, and H. Zappe, J. Opt. Soc. Am. A 29, 808 (2012).
    [CrossRef]
  7. J. Brunne and U. Wallrabe, Opt. Lett. 38, 1939 (2013).
    [CrossRef]
  8. D. Brousseau, J. Drapeau, M. Piché, and E. F. Borra, Appl. Opt. 50, 4005 (2011).
    [CrossRef]
  9. G. Milne, G. D. Jeffries, and D. T. Chiu, Appl. Phys. Lett. 92, 261101 (2008).
    [CrossRef]
  10. J. Brunne, M. C. Wapler, R. Grunwald, and U. Wallrabe, J. Micromech. Microeng. 23, 115002 (2013).
    [CrossRef]
  11. A. Thaning, Z. Jaroszewicz, and A. T. Friberg, Appl. Opt. 42, 9 (2003).
    [CrossRef]

2013

J. Brunne, M. C. Wapler, R. Grunwald, and U. Wallrabe, J. Micromech. Microeng. 23, 115002 (2013).
[CrossRef]

J. Brunne and U. Wallrabe, Opt. Lett. 38, 1939 (2013).
[CrossRef]

2012

2011

2010

F. Fahrbach, P. Simon, and A. Rohrbach, Nat. Photonics 4, 780 (2010).
[CrossRef]

2009

2008

G. Milne, G. D. Jeffries, and D. T. Chiu, Appl. Phys. Lett. 92, 261101 (2008).
[CrossRef]

2007

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, and C. T. A. Brown, Appl. Phys. Lett. 91, 53902 (2007).
[CrossRef]

2005

D. McGloin and K. Dholakia, Contemp. Phys. 46, 15 (2005).
[CrossRef]

2003

Agate, B.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, and C. T. A. Brown, Appl. Phys. Lett. 91, 53902 (2007).
[CrossRef]

Bhuyan, M. K.

Bock, M.

Börner, P.

Borra, E. F.

Brousseau, D.

Brown, C. T. A.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, and C. T. A. Brown, Appl. Phys. Lett. 91, 53902 (2007).
[CrossRef]

Brunne, J.

J. Brunne, M. C. Wapler, R. Grunwald, and U. Wallrabe, J. Micromech. Microeng. 23, 115002 (2013).
[CrossRef]

J. Brunne and U. Wallrabe, Opt. Lett. 38, 1939 (2013).
[CrossRef]

Chiu, D. T.

G. Milne, G. D. Jeffries, and D. T. Chiu, Appl. Phys. Lett. 92, 261101 (2008).
[CrossRef]

Comrie, M.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, and C. T. A. Brown, Appl. Phys. Lett. 91, 53902 (2007).
[CrossRef]

Courvoisier, F.

Das, S. K.

Dholakia, K.

D. McGloin and K. Dholakia, Contemp. Phys. 46, 15 (2005).
[CrossRef]

Diehl, M.

Drapeau, J.

Dudley, J. M.

Fahrbach, F.

F. Fahrbach, P. Simon, and A. Rohrbach, Nat. Photonics 4, 780 (2010).
[CrossRef]

Fischer, C.

Friberg, A. T.

Furfaro, L.

Garces-Chavez, V.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, and C. T. A. Brown, Appl. Phys. Lett. 91, 53902 (2007).
[CrossRef]

Grunwald, R.

J. Brunne, M. C. Wapler, R. Grunwald, and U. Wallrabe, J. Micromech. Microeng. 23, 115002 (2013).
[CrossRef]

M. Bock, S. K. Das, C. Fischer, M. Diehl, P. Börner, and R. Grunwald, Opt. Lett. 37, 1154 (2012).
[CrossRef]

Jacquot, M.

Jaroszewicz, Z.

Jeffries, G. D.

G. Milne, G. D. Jeffries, and D. T. Chiu, Appl. Phys. Lett. 92, 261101 (2008).
[CrossRef]

Lacourt, P.-A.

McGloin, D.

D. McGloin and K. Dholakia, Contemp. Phys. 46, 15 (2005).
[CrossRef]

Milne, G.

G. Milne, G. D. Jeffries, and D. T. Chiu, Appl. Phys. Lett. 92, 261101 (2008).
[CrossRef]

Piché, M.

Rohrbach, A.

F. Fahrbach, P. Simon, and A. Rohrbach, Nat. Photonics 4, 780 (2010).
[CrossRef]

Seifert, A.

Simon, P.

F. Fahrbach, P. Simon, and A. Rohrbach, Nat. Photonics 4, 780 (2010).
[CrossRef]

Spether, D.

Stevenson, D. J.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, and C. T. A. Brown, Appl. Phys. Lett. 91, 53902 (2007).
[CrossRef]

Thaning, A.

Tsampoula, X.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, and C. T. A. Brown, Appl. Phys. Lett. 91, 53902 (2007).
[CrossRef]

Wallrabe, U.

J. Brunne, M. C. Wapler, R. Grunwald, and U. Wallrabe, J. Micromech. Microeng. 23, 115002 (2013).
[CrossRef]

J. Brunne and U. Wallrabe, Opt. Lett. 38, 1939 (2013).
[CrossRef]

Wapler, M. C.

J. Brunne, M. C. Wapler, R. Grunwald, and U. Wallrabe, J. Micromech. Microeng. 23, 115002 (2013).
[CrossRef]

Weber, N.

Zappe, H.

Appl. Opt.

Appl. Phys. Lett.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, and C. T. A. Brown, Appl. Phys. Lett. 91, 53902 (2007).
[CrossRef]

G. Milne, G. D. Jeffries, and D. T. Chiu, Appl. Phys. Lett. 92, 261101 (2008).
[CrossRef]

Contemp. Phys.

D. McGloin and K. Dholakia, Contemp. Phys. 46, 15 (2005).
[CrossRef]

J. Micromech. Microeng.

J. Brunne, M. C. Wapler, R. Grunwald, and U. Wallrabe, J. Micromech. Microeng. 23, 115002 (2013).
[CrossRef]

J. Opt. Soc. Am. A

Nat. Photonics

F. Fahrbach, P. Simon, and A. Rohrbach, Nat. Photonics 4, 780 (2010).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Exploded view of the piezoelectric axicon mirror with its four major components.

Fig. 2.
Fig. 2.

Passive mirror layer is glued to the piezo while an electric field (close to saturation) is applied. After curing, the mirror features a downward spherical displacement.

Fig. 3.
Fig. 3.

Electric potential and the resulting mirror slope across the radius of the device after n=1, 10 and 100 iterations of the optimization procedure.

Fig. 4.
Fig. 4.

Micrograph of the backside of the piezo-disk before (a) and after (b) applying the spray-coating process. The inset shows a magnified view of a single via.

Fig. 5.
Fig. 5.

Static deflection of the mirror for different values of the control signal C. The 3D result shows the full aperture for C=1.

Fig. 6.
Fig. 6.

Hysteresis curve of the mirror slope at an operating frequency of 10 Hz in comparison with the static measurement. The inset shows the area used for the evaluation.

Fig. 7.
Fig. 7.

Axicon mirror mounted on the optical bench and intensity distribution of the quasi-Bessel beam at a distance of z=1m for four operating frequencies (top) and four static images at different positions within the overlapping zone (bottom).

Fig. 8.
Fig. 8.

Mean width of the central maximum of the quasi-Bessel beam within the overlapping zone in comparison with the theoretical value of an infinite Bessel beam.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Vi(n)=Vi(n1)+k(wiwt)Vi(n1)/wt.
Vi(C)=ViC+Vmax(1C).

Metrics