Abstract

We have demonstrated two-tone frequency-modulation (FM) stimulated Rayleigh spectroscopy. This method can provide high spectral resolution (1MHz), excellent pump/probe detuning accuracy, and near-shot-noise-limited signal-to-noise ratios using a single narrowband laser as the master oscillator. Pump/probe detuning and FM sideband generation are produced with an electro-optic modulator. A double-pass two-rod Nd:YAG amplifier provides peak powers near 1 kW for the pump beam. Unlike with two-tone FM absorption spectroscopy, the phase signal is retained for two-tone FM Rayleigh spectroscopy. Measurements confirm that the shape of the phase component of the stimulated thermal Rayleigh peak agrees with theory.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).
  2. D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, Phys. Rev. Lett. 19, 828 (1967).
    [CrossRef]
  3. D. W. Pohl, S. E. Schwarz, and V. Irniger, Phys. Rev. Lett. 31, 32 (1973).
    [CrossRef]
  4. H. Eichler, G. Salje, and H. Stahl, J. Appl. Phys. 44, 5383 (1973).
    [CrossRef]
  5. J. H. Grinstead and P. F. Barker, Phys. Rev. Lett. 85, 1222 (2000).
    [CrossRef]
  6. S. Takagi and H. Tanaka, Rev. Sci. Instrum. 73, 3337 (2002).
    [CrossRef]
  7. G. W. Faris, M. Gerken, C. Jirauschek, D. Hogan, and Y. Chen, Opt. Lett. 26, 1894 (2001).
    [CrossRef]
  8. C. Jirauschek, E. M. Jeffrey, and G. W. Faris, Phys. Rev. Lett. 87, 233902 (2001).
    [CrossRef]
  9. W. Kaiser and M. Maier, in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, 1972), Vol. 2, pp. 1077–1150.
  10. R. W. Boyd, in Nonlinear Optics (Academic/Elsevier, 2008), pp. 429–471.
  11. R. M. Herman and M. A. Gray, Phys. Rev. Lett. 19, 824 (1967).
    [CrossRef]
  12. K. S. Kalogerakis, B. H. Blehm, R. E. Forman, C. Jirauschek, and G. W. Faris, J. Opt. Soc. Am. B 24, 2040 (2007).
    [CrossRef]
  13. G. W. Faris, M. J. Dyer, and W. K. Bischel, Opt. Lett. 19, 1529 (1994).
    [CrossRef]
  14. K. Ratanaphruks, W. T. Grubbs, and R. A. MacPhail, Chem. Phys. Lett. 182, 371 (1991).
    [CrossRef]
  15. T. Sonehara, Y. Konno, H. Kaminaga, S. Saikan, and S. Ohno, J. Opt. Soc. Am. B 24, 1193 (2007).
    [CrossRef]
  16. G. C. Bjorklund, Opt. Lett. 5, 15 (1980).
    [CrossRef]
  17. G. R. Janik, C. B. Carlisle, and T. F. Gallagher, J. Opt. Soc. Am. B 3, 1070 (1986).
    [CrossRef]

2007 (2)

2002 (1)

S. Takagi and H. Tanaka, Rev. Sci. Instrum. 73, 3337 (2002).
[CrossRef]

2001 (2)

C. Jirauschek, E. M. Jeffrey, and G. W. Faris, Phys. Rev. Lett. 87, 233902 (2001).
[CrossRef]

G. W. Faris, M. Gerken, C. Jirauschek, D. Hogan, and Y. Chen, Opt. Lett. 26, 1894 (2001).
[CrossRef]

2000 (1)

J. H. Grinstead and P. F. Barker, Phys. Rev. Lett. 85, 1222 (2000).
[CrossRef]

1994 (1)

1991 (1)

K. Ratanaphruks, W. T. Grubbs, and R. A. MacPhail, Chem. Phys. Lett. 182, 371 (1991).
[CrossRef]

1986 (1)

1980 (1)

1973 (2)

D. W. Pohl, S. E. Schwarz, and V. Irniger, Phys. Rev. Lett. 31, 32 (1973).
[CrossRef]

H. Eichler, G. Salje, and H. Stahl, J. Appl. Phys. 44, 5383 (1973).
[CrossRef]

1967 (2)

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, Phys. Rev. Lett. 19, 828 (1967).
[CrossRef]

R. M. Herman and M. A. Gray, Phys. Rev. Lett. 19, 824 (1967).
[CrossRef]

Barker, P. F.

J. H. Grinstead and P. F. Barker, Phys. Rev. Lett. 85, 1222 (2000).
[CrossRef]

Bischel, W. K.

Bjorklund, G. C.

Blehm, B. H.

Boyd, R. W.

R. W. Boyd, in Nonlinear Optics (Academic/Elsevier, 2008), pp. 429–471.

Carlisle, C. B.

Chen, Y.

Cho, C. W.

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, Phys. Rev. Lett. 19, 828 (1967).
[CrossRef]

Dyer, M. J.

Eichler, H.

H. Eichler, G. Salje, and H. Stahl, J. Appl. Phys. 44, 5383 (1973).
[CrossRef]

Eichler, H. J.

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).

Faris, G. W.

Foltz, N. D.

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, Phys. Rev. Lett. 19, 828 (1967).
[CrossRef]

Forman, R. E.

Gallagher, T. F.

Gerken, M.

Gray, M. A.

R. M. Herman and M. A. Gray, Phys. Rev. Lett. 19, 824 (1967).
[CrossRef]

Grinstead, J. H.

J. H. Grinstead and P. F. Barker, Phys. Rev. Lett. 85, 1222 (2000).
[CrossRef]

Grubbs, W. T.

K. Ratanaphruks, W. T. Grubbs, and R. A. MacPhail, Chem. Phys. Lett. 182, 371 (1991).
[CrossRef]

Günter, P.

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).

Herman, R. M.

R. M. Herman and M. A. Gray, Phys. Rev. Lett. 19, 824 (1967).
[CrossRef]

Hogan, D.

Irniger, V.

D. W. Pohl, S. E. Schwarz, and V. Irniger, Phys. Rev. Lett. 31, 32 (1973).
[CrossRef]

Janik, G. R.

Jeffrey, E. M.

C. Jirauschek, E. M. Jeffrey, and G. W. Faris, Phys. Rev. Lett. 87, 233902 (2001).
[CrossRef]

Jirauschek, C.

Kaiser, W.

W. Kaiser and M. Maier, in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, 1972), Vol. 2, pp. 1077–1150.

Kalogerakis, K. S.

Kaminaga, H.

Konno, Y.

MacPhail, R. A.

K. Ratanaphruks, W. T. Grubbs, and R. A. MacPhail, Chem. Phys. Lett. 182, 371 (1991).
[CrossRef]

Maier, M.

W. Kaiser and M. Maier, in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, 1972), Vol. 2, pp. 1077–1150.

Ohno, S.

Pohl, D. W.

D. W. Pohl, S. E. Schwarz, and V. Irniger, Phys. Rev. Lett. 31, 32 (1973).
[CrossRef]

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).

Rank, D. H.

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, Phys. Rev. Lett. 19, 828 (1967).
[CrossRef]

Ratanaphruks, K.

K. Ratanaphruks, W. T. Grubbs, and R. A. MacPhail, Chem. Phys. Lett. 182, 371 (1991).
[CrossRef]

Saikan, S.

Salje, G.

H. Eichler, G. Salje, and H. Stahl, J. Appl. Phys. 44, 5383 (1973).
[CrossRef]

Schwarz, S. E.

D. W. Pohl, S. E. Schwarz, and V. Irniger, Phys. Rev. Lett. 31, 32 (1973).
[CrossRef]

Sonehara, T.

Stahl, H.

H. Eichler, G. Salje, and H. Stahl, J. Appl. Phys. 44, 5383 (1973).
[CrossRef]

Takagi, S.

S. Takagi and H. Tanaka, Rev. Sci. Instrum. 73, 3337 (2002).
[CrossRef]

Tanaka, H.

S. Takagi and H. Tanaka, Rev. Sci. Instrum. 73, 3337 (2002).
[CrossRef]

Wiggins, T. A.

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, Phys. Rev. Lett. 19, 828 (1967).
[CrossRef]

Chem. Phys. Lett. (1)

K. Ratanaphruks, W. T. Grubbs, and R. A. MacPhail, Chem. Phys. Lett. 182, 371 (1991).
[CrossRef]

J. Appl. Phys. (1)

H. Eichler, G. Salje, and H. Stahl, J. Appl. Phys. 44, 5383 (1973).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Lett. (3)

Phys. Rev. Lett. (5)

J. H. Grinstead and P. F. Barker, Phys. Rev. Lett. 85, 1222 (2000).
[CrossRef]

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, Phys. Rev. Lett. 19, 828 (1967).
[CrossRef]

D. W. Pohl, S. E. Schwarz, and V. Irniger, Phys. Rev. Lett. 31, 32 (1973).
[CrossRef]

C. Jirauschek, E. M. Jeffrey, and G. W. Faris, Phys. Rev. Lett. 87, 233902 (2001).
[CrossRef]

R. M. Herman and M. A. Gray, Phys. Rev. Lett. 19, 824 (1967).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Takagi and H. Tanaka, Rev. Sci. Instrum. 73, 3337 (2002).
[CrossRef]

Other (3)

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).

W. Kaiser and M. Maier, in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, 1972), Vol. 2, pp. 1077–1150.

R. W. Boyd, in Nonlinear Optics (Academic/Elsevier, 2008), pp. 429–471.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Optical arrangements for producing probe and pump beams.

Fig. 2.
Fig. 2.

Electronics (left) and frequency content (right) for signal detection, probe, and pump (from top to bottom). For clarity, electronic filters and amplifiers are not shown. The frequencies of the master oscillator, pump, and probe (Stokes) beams are denoted as ν0, νp, and νs, respectively. LO refers to the RF local oscillator used for the mixing steps.

Fig. 3.
Fig. 3.

Variation in experimental two-tone FM stimulated Rayleigh spectra in hexane as a function of delay between the probe and the reference signal to the I/Q demodulator. The waterfall graph is reproduced as an image inset at the upper right.

Fig. 4.
Fig. 4.

I and Q channels for two-tone FM stimulated Rayleigh scattering in hexane. There are replicate peaks centered at 165 and 235 MHz. The upper axis (pump/probe detuning) and lower axis (tunable RF frequency) apply to both traces.

Fig. 5.
Fig. 5.

Phasor diagrams (top) show gain/loss (δ) and phase shift (ϕ) for the output probe beam for different amounts of detuning Δω. The relative gain/loss (Re(χ/K) and phase shift Im(χ/K) values are listed under the phasor diagrams.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I(Ωt)=(δ+1+δ1)cos(Ωt)(ϕ+1ϕ1)sin(Ωt),
χSTRS(3)(Δω)=K1i(2Δω/ΓR)1+(2Δω/ΓR)2,

Metrics