Abstract

We study theoretically a parity-time (PT)-symmetric, saturable, balanced gain–loss system in a ring-cavity configuration. The saturable gain and loss are modeled by a two-level medium with or without population inversion. We show that the specifics of the spectral singularity can be fully controlled by the cavity and the atomic detuning parameters. The theory is based on the mean-field approximation, as in the standard theory of optical bistability. Further, in the linear regime we demonstrate the regularization of the singularity in detuned systems, while larger input power levels are shown to be adequate to limit the infinite growth in absence of detunings.

© 2014 Optical Society of America

Full Article  |  PDF Article
Related Articles
Versatile bistable gate based on quadratic cascading in a Bragg periodic structure

Matteo Picciau, Giuseppe Leo, and Gaetano Assanto
J. Opt. Soc. Am. B 13(4) 661-670 (1996)

Theory of nonlinear coupled-cavity mode locking

J. Herrmann and M. Müller
J. Opt. Soc. Am. B 13(7) 1542-1558 (1996)

Cavity solitons in passive bulk semiconductor microcavities. I. Microscopic model and modulational instabilities

G. Tissoni, L. Spinelli, M. Brambilla, T. Maggipinto, I. M. Perrini, and L. A. Lugiato
J. Opt. Soc. Am. B 16(11) 2083-2094 (1999)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription