Abstract

Optical switches are among the essential building blocks in optical networks due to their unique role in routing data. In this Letter, for the first time to our knowledge, we have exploited a high-quality factor (Q) optical microresonator combined with the well-known irreversible dielectric breakdown phenomenon to introduce a simple field-programmable on/off optical switch. This simple unit can be thought of as a building block for more complex optical systems with different functionalities. By using this simple unit we have demonstrated an optical field-programmable 2×2 switch. After the device is programmed by the user, no external electrical signal is needed to maintain the state of the device. The same approach can readily be adopted to design a field-programmable arbitrary N×N optical switch.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, Opt. Express 19, 13245 (2011).
    [CrossRef]
  2. H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, IEEE PTL 19, 704 (2007).
  3. B. G. Lee, A. Biberman, J. Chan, and K. Bergman, IEEE J. Sel. Top. Quantum Electron. 16, 6 (2010).
    [CrossRef]
  4. B. G. Lee, A. Biberman, N. Sherwood-Droz, C. B. Poitras, M. Lipson, and K. Bergman, J. Lightwave Technol. 27, 2900 (2009).
    [CrossRef]
  5. P. Dong, S. F. Preble, and M. Lipson, Opt. Express 15, 9600 (2007).
    [CrossRef]
  6. A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, IEEE Photon. Technol. Lett. 23, 504 (2011).
    [CrossRef]
  7. C. Pollock and M. Lipson, Integrated Photonics (Springer, 2004).
  8. H. Lee, N. J. Smith, C. G. Pantano, E. Furman, and M. T. Lanagan, J. Am. Ceram. Soc. 93, 2346 (2010).
    [CrossRef]
  9. J. S. Suehle and P. Chaparala, IEEE Trans. Electron Devices 44, 801 (1997).
    [CrossRef]
  10. J. F. Verweij and J. H. Klootwijk, Microelectron. J. 27, 611 (1996).
  11. R. Soref and B. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
    [CrossRef]

2011 (2)

2010 (2)

H. Lee, N. J. Smith, C. G. Pantano, E. Furman, and M. T. Lanagan, J. Am. Ceram. Soc. 93, 2346 (2010).
[CrossRef]

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, IEEE J. Sel. Top. Quantum Electron. 16, 6 (2010).
[CrossRef]

2009 (1)

2007 (2)

P. Dong, S. F. Preble, and M. Lipson, Opt. Express 15, 9600 (2007).
[CrossRef]

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, IEEE PTL 19, 704 (2007).

1997 (1)

J. S. Suehle and P. Chaparala, IEEE Trans. Electron Devices 44, 801 (1997).
[CrossRef]

1996 (1)

J. F. Verweij and J. H. Klootwijk, Microelectron. J. 27, 611 (1996).

1987 (1)

R. Soref and B. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

Bennett, B.

R. Soref and B. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

Bergman, K.

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, IEEE Photon. Technol. Lett. 23, 504 (2011).
[CrossRef]

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, IEEE J. Sel. Top. Quantum Electron. 16, 6 (2010).
[CrossRef]

B. G. Lee, A. Biberman, N. Sherwood-Droz, C. B. Poitras, M. Lipson, and K. Bergman, J. Lightwave Technol. 27, 2900 (2009).
[CrossRef]

Biberman, A.

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, IEEE Photon. Technol. Lett. 23, 504 (2011).
[CrossRef]

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, IEEE J. Sel. Top. Quantum Electron. 16, 6 (2010).
[CrossRef]

B. G. Lee, A. Biberman, N. Sherwood-Droz, C. B. Poitras, M. Lipson, and K. Bergman, J. Lightwave Technol. 27, 2900 (2009).
[CrossRef]

Chan, J.

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, IEEE Photon. Technol. Lett. 23, 504 (2011).
[CrossRef]

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, IEEE J. Sel. Top. Quantum Electron. 16, 6 (2010).
[CrossRef]

Chaparala, P.

J. S. Suehle and P. Chaparala, IEEE Trans. Electron Devices 44, 801 (1997).
[CrossRef]

Cheung, S.

Danziger, S.

Ding, Z.

Djordjevic, S. S.

Dong, P.

Fontaine, N. K.

Furman, E.

H. Lee, N. J. Smith, C. G. Pantano, E. Furman, and M. T. Lanagan, J. Am. Ceram. Soc. 93, 2346 (2010).
[CrossRef]

Guan, B.

Hill, C. M.

Ibrahim, S.

Klootwijk, J. H.

J. F. Verweij and J. H. Klootwijk, Microelectron. J. 27, 611 (1996).

Lanagan, M. T.

H. Lee, N. J. Smith, C. G. Pantano, E. Furman, and M. T. Lanagan, J. Am. Ceram. Soc. 93, 2346 (2010).
[CrossRef]

Lee, B. G.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, IEEE J. Sel. Top. Quantum Electron. 16, 6 (2010).
[CrossRef]

B. G. Lee, A. Biberman, N. Sherwood-Droz, C. B. Poitras, M. Lipson, and K. Bergman, J. Lightwave Technol. 27, 2900 (2009).
[CrossRef]

Lee, H.

H. Lee, N. J. Smith, C. G. Pantano, E. Furman, and M. T. Lanagan, J. Am. Ceram. Soc. 93, 2346 (2010).
[CrossRef]

Li, D.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, IEEE PTL 19, 704 (2007).

Lipson, M.

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, IEEE Photon. Technol. Lett. 23, 504 (2011).
[CrossRef]

B. G. Lee, A. Biberman, N. Sherwood-Droz, C. B. Poitras, M. Lipson, and K. Bergman, J. Lightwave Technol. 27, 2900 (2009).
[CrossRef]

P. Dong, S. F. Preble, and M. Lipson, Opt. Express 15, 9600 (2007).
[CrossRef]

C. Pollock and M. Lipson, Integrated Photonics (Springer, 2004).

Lira, H. L. R.

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, IEEE Photon. Technol. Lett. 23, 504 (2011).
[CrossRef]

Martinez, J.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, IEEE PTL 19, 704 (2007).

Ng, H.-Y.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, IEEE PTL 19, 704 (2007).

Okamoto, K.

Ophir, N.

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, IEEE Photon. Technol. Lett. 23, 504 (2011).
[CrossRef]

Padmaraju, K.

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, IEEE Photon. Technol. Lett. 23, 504 (2011).
[CrossRef]

Panepucci, R. R.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, IEEE PTL 19, 704 (2007).

Pantano, C. G.

H. Lee, N. J. Smith, C. G. Pantano, E. Furman, and M. T. Lanagan, J. Am. Ceram. Soc. 93, 2346 (2010).
[CrossRef]

Pathak, K.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, IEEE PTL 19, 704 (2007).

Poitras, C. B.

Pollock, C.

C. Pollock and M. Lipson, Integrated Photonics (Springer, 2004).

Pomerene, A. T.

Preble, S. F.

Scott, R. P.

Seaford, L. L.

Sherwood-Droz, N.

Smith, N. J.

H. Lee, N. J. Smith, C. G. Pantano, E. Furman, and M. T. Lanagan, J. Am. Ceram. Soc. 93, 2346 (2010).
[CrossRef]

Soref, R.

R. Soref and B. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

Su, T.

Suehle, J. S.

J. S. Suehle and P. Chaparala, IEEE Trans. Electron Devices 44, 801 (1997).
[CrossRef]

Verweij, J. F.

J. F. Verweij and J. H. Klootwijk, Microelectron. J. 27, 611 (1996).

Wang, M. R.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, IEEE PTL 19, 704 (2007).

Wang, X.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, IEEE PTL 19, 704 (2007).

Yoo, S. J. B.

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, IEEE J. Sel. Top. Quantum Electron. 16, 6 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, IEEE Photon. Technol. Lett. 23, 504 (2011).
[CrossRef]

IEEE PTL (1)

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, IEEE PTL 19, 704 (2007).

IEEE Trans. Electron Devices (1)

J. S. Suehle and P. Chaparala, IEEE Trans. Electron Devices 44, 801 (1997).
[CrossRef]

J. Am. Ceram. Soc. (1)

H. Lee, N. J. Smith, C. G. Pantano, E. Furman, and M. T. Lanagan, J. Am. Ceram. Soc. 93, 2346 (2010).
[CrossRef]

J. Lightwave Technol. (1)

Microelectron. J. (1)

J. F. Verweij and J. H. Klootwijk, Microelectron. J. 27, 611 (1996).

Opt. Express (2)

Other (1)

C. Pollock and M. Lipson, Integrated Photonics (Springer, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Cross-section of a fabricated waveguide in the multilayer bonded platform, (b) tilted SEM image, (c) optical micrograph of the fabricated device, and (d), (e) 3D schematic along with the cross-section of the device superimposed with the TE-polarized optical mode obtained through finite element method (FEM) simulation at 1540 nm.

Fig. 2.
Fig. 2.

(a) Transmission spectrum of the device in Fig. 1 under different voltages, (b) demonstration of resonance elimination through irreversible oxide breakdown, (c) SEM device metallization melting after breakdown, and (d) view after removing the metallization, the cladding layer, and the top Si layer showing the damaged bottom Si layer.

Fig. 3.
Fig. 3.

(a) Schematic of the 2×2 switch describing the on/off behavior of the device with the resonators in and out of operation and (b) operation table for the resonator states (the X sign indicates that the resonator can be either on or off).

Fig. 4.
Fig. 4.

Normalized spectrum of the through port (Out.1) of the 2×2 switch in Fig. 3 during resonance trimming (dashed blue curves); the solid blue curve is the trimmed top cavity resonance which sits 10 pm away from the bottom cavity resonance (pink curve). Solid green and violet curves are the transmission spectra collected at the Out.2 port with the laser light launched in In.1 and In.2, respectively. The corresponding spectrum after resonance elimination are drawn in pale green and pale violet. The operation is in accordance with the operation table in Fig. 3(b). The inset shows an SEM image of the fabricated device.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

TThrough(λ)=1κ2αeiϕ(λ)11κ2αeiϕ(λ),
TDrop(λ)=ακ1*κ2eiϕ(λ)/21(1κ22)(1κ12)αeiϕ(λ),

Metrics