Abstract

The influence of the air gap on the response of transmission for a transverse-electric mode parallel plate waveguide with a single deep groove has been experimentally studied. As the air gap is larger than the resonant wavelength of a high-order cavity mode in a single deep grooved waveguide, only the fundamental cavity mode can be excited and the single resonance (band) can be observed in a transmission spectrum. The decrease of the air gap can not only efficiently push the radiation of the fundamental cavity mode into the deep groove but also excite the high-order cavity modes, resulting in multiple resonances (multiband) in the corresponding spectrum. Based on the above observations, a tunable multiband terahertz notch filter has been proposed and the variation of the air gap has turned out to be an effective method to select band number. Experimental data and simulated results verify this band number tunability.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Mendis and D. Grischkowsky, Opt. Lett. 26, 846 (2001).
    [CrossRef]
  2. M. Nagel, P. H. Bolivar, and H. Kurz, Semicond. Sci. Technol. 20, S281 (2005).
    [CrossRef]
  3. S. S. Harsha, N. Laman, and D. Grischkowsky, Appl. Phys. Lett. 94, 091118 (2009).
    [CrossRef]
  4. J. Kitagawa, M. Kodama, S. Koya, Y. Nishifuji, D. Armand, and Y. Kadoya, Opt. Express 20, 17271 (2012).
    [CrossRef]
  5. R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, Appl. Phys. Lett. 95, 171113 (2009).
    [CrossRef]
  6. E. S. Lee, J.-K. So, G.-S. Park, D. Kim, C.-S. Kee, and T.-I. Jeon, Opt. Express 20, 6116 (2012).
    [CrossRef]
  7. E. S. Lee, S.-G. Lee, C.-S. Kee, and T.-I. Jeon, Opt. Express 19, 14852 (2011).
    [CrossRef]
  8. L. Chen, C. M. Gao, J. M. Xu, X. F. Zang, B. Cao, and Y. M. Zhu, Opt. Lett. 38, 1379 (2013).
    [CrossRef]
  9. V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, Appl. Phys. Lett. 100, 231108 (2012).
    [CrossRef]
  10. E. S. Lee and T. Jeon, Opt. Express 20, 29605 (2012).
    [CrossRef]
  11. R. Mendis and D. M. Mittleman, Opt. Express 17, 14839 (2009).
    [CrossRef]
  12. R. Mendis and D. M. Mittleman, J. Opt. Soc. Am. B 26, A6 (2009).
    [CrossRef]
  13. V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, Opt. Lett. 36, 1452 (2011).
    [CrossRef]
  14. L. Chen, Z. Q. Cao, F. Ou, H. G. Li, Q. S. Shen, and H. C. Qiao, Opt. Lett. 32, 1432 (2007).
    [CrossRef]
  15. X. S. Lin and X. G. Huang, Opt. Lett. 33, 2874 (2008).
    [CrossRef]
  16. M. Yosuke, O. Toshihiro, H. Masanobu, F. Masuo, and N. Masatoshi, Opt. Express 16, 16314 (2008).
    [CrossRef]
  17. X. Piao, S. Yu, S. Koo, K. Lee, and N. Park, Opt. Express 19, 10907 (2011).
    [CrossRef]
  18. L. Chen, J. M. Xu, C. M. Gao, X. F. Zang, B. Cai, and Y. M. Zhu, Appl. Phys. Lett. 103, 251105 (2013).
    [CrossRef]
  19. L. Chen, Y. M. Zhu, X. F. Zang, B. Cai, Z. Li, L. Xie, and S. L. Zhuang, Light Sci. Appl. 2, e60 (2013).
    [CrossRef]

2013 (3)

L. Chen, J. M. Xu, C. M. Gao, X. F. Zang, B. Cai, and Y. M. Zhu, Appl. Phys. Lett. 103, 251105 (2013).
[CrossRef]

L. Chen, Y. M. Zhu, X. F. Zang, B. Cai, Z. Li, L. Xie, and S. L. Zhuang, Light Sci. Appl. 2, e60 (2013).
[CrossRef]

L. Chen, C. M. Gao, J. M. Xu, X. F. Zang, B. Cao, and Y. M. Zhu, Opt. Lett. 38, 1379 (2013).
[CrossRef]

2012 (4)

2011 (3)

2009 (4)

R. Mendis and D. M. Mittleman, J. Opt. Soc. Am. B 26, A6 (2009).
[CrossRef]

R. Mendis and D. M. Mittleman, Opt. Express 17, 14839 (2009).
[CrossRef]

S. S. Harsha, N. Laman, and D. Grischkowsky, Appl. Phys. Lett. 94, 091118 (2009).
[CrossRef]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, Appl. Phys. Lett. 95, 171113 (2009).
[CrossRef]

2008 (2)

2007 (1)

2005 (1)

M. Nagel, P. H. Bolivar, and H. Kurz, Semicond. Sci. Technol. 20, S281 (2005).
[CrossRef]

2001 (1)

Armand, D.

Astley, V.

V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, Appl. Phys. Lett. 100, 231108 (2012).
[CrossRef]

V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, Opt. Lett. 36, 1452 (2011).
[CrossRef]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, Appl. Phys. Lett. 95, 171113 (2009).
[CrossRef]

Bolivar, P. H.

M. Nagel, P. H. Bolivar, and H. Kurz, Semicond. Sci. Technol. 20, S281 (2005).
[CrossRef]

Cai, B.

L. Chen, J. M. Xu, C. M. Gao, X. F. Zang, B. Cai, and Y. M. Zhu, Appl. Phys. Lett. 103, 251105 (2013).
[CrossRef]

L. Chen, Y. M. Zhu, X. F. Zang, B. Cai, Z. Li, L. Xie, and S. L. Zhuang, Light Sci. Appl. 2, e60 (2013).
[CrossRef]

Cao, B.

Cao, Z. Q.

Chen, L.

L. Chen, Y. M. Zhu, X. F. Zang, B. Cai, Z. Li, L. Xie, and S. L. Zhuang, Light Sci. Appl. 2, e60 (2013).
[CrossRef]

L. Chen, J. M. Xu, C. M. Gao, X. F. Zang, B. Cai, and Y. M. Zhu, Appl. Phys. Lett. 103, 251105 (2013).
[CrossRef]

L. Chen, C. M. Gao, J. M. Xu, X. F. Zang, B. Cao, and Y. M. Zhu, Opt. Lett. 38, 1379 (2013).
[CrossRef]

L. Chen, Z. Q. Cao, F. Ou, H. G. Li, Q. S. Shen, and H. C. Qiao, Opt. Lett. 32, 1432 (2007).
[CrossRef]

Gao, C. M.

L. Chen, J. M. Xu, C. M. Gao, X. F. Zang, B. Cai, and Y. M. Zhu, Appl. Phys. Lett. 103, 251105 (2013).
[CrossRef]

L. Chen, C. M. Gao, J. M. Xu, X. F. Zang, B. Cao, and Y. M. Zhu, Opt. Lett. 38, 1379 (2013).
[CrossRef]

Grischkowsky, D.

S. S. Harsha, N. Laman, and D. Grischkowsky, Appl. Phys. Lett. 94, 091118 (2009).
[CrossRef]

R. Mendis and D. Grischkowsky, Opt. Lett. 26, 846 (2001).
[CrossRef]

Harsha, S. S.

S. S. Harsha, N. Laman, and D. Grischkowsky, Appl. Phys. Lett. 94, 091118 (2009).
[CrossRef]

Huang, X. G.

Jeon, T.

Jeon, T.-I.

Jones, J.

V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, Appl. Phys. Lett. 100, 231108 (2012).
[CrossRef]

Kadoya, Y.

Kee, C.-S.

Kim, D.

Kitagawa, J.

Kodama, M.

Koo, S.

Koya, S.

Kurz, H.

M. Nagel, P. H. Bolivar, and H. Kurz, Semicond. Sci. Technol. 20, S281 (2005).
[CrossRef]

Laman, N.

S. S. Harsha, N. Laman, and D. Grischkowsky, Appl. Phys. Lett. 94, 091118 (2009).
[CrossRef]

Lee, E. S.

Lee, K.

Lee, S.-G.

Li, H. G.

Li, Z.

L. Chen, Y. M. Zhu, X. F. Zang, B. Cai, Z. Li, L. Xie, and S. L. Zhuang, Light Sci. Appl. 2, e60 (2013).
[CrossRef]

Lin, X. S.

Liu, J.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, Appl. Phys. Lett. 95, 171113 (2009).
[CrossRef]

Masanobu, H.

Masatoshi, N.

Masuo, F.

McCracken, B.

Mendis, R.

Mittleman, D. M.

V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, Appl. Phys. Lett. 100, 231108 (2012).
[CrossRef]

V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, Opt. Lett. 36, 1452 (2011).
[CrossRef]

R. Mendis and D. M. Mittleman, Opt. Express 17, 14839 (2009).
[CrossRef]

R. Mendis and D. M. Mittleman, J. Opt. Soc. Am. B 26, A6 (2009).
[CrossRef]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, Appl. Phys. Lett. 95, 171113 (2009).
[CrossRef]

Nagel, M.

M. Nagel, P. H. Bolivar, and H. Kurz, Semicond. Sci. Technol. 20, S281 (2005).
[CrossRef]

Nishifuji, Y.

Ou, F.

Park, G.-S.

Park, N.

Piao, X.

Qiao, H. C.

Reichel, K. S.

V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, Appl. Phys. Lett. 100, 231108 (2012).
[CrossRef]

Shen, Q. S.

So, J.-K.

Toshihiro, O.

Xie, L.

L. Chen, Y. M. Zhu, X. F. Zang, B. Cai, Z. Li, L. Xie, and S. L. Zhuang, Light Sci. Appl. 2, e60 (2013).
[CrossRef]

Xu, J. M.

L. Chen, J. M. Xu, C. M. Gao, X. F. Zang, B. Cai, and Y. M. Zhu, Appl. Phys. Lett. 103, 251105 (2013).
[CrossRef]

L. Chen, C. M. Gao, J. M. Xu, X. F. Zang, B. Cao, and Y. M. Zhu, Opt. Lett. 38, 1379 (2013).
[CrossRef]

Yosuke, M.

Yu, S.

Zang, X. F.

L. Chen, J. M. Xu, C. M. Gao, X. F. Zang, B. Cai, and Y. M. Zhu, Appl. Phys. Lett. 103, 251105 (2013).
[CrossRef]

L. Chen, Y. M. Zhu, X. F. Zang, B. Cai, Z. Li, L. Xie, and S. L. Zhuang, Light Sci. Appl. 2, e60 (2013).
[CrossRef]

L. Chen, C. M. Gao, J. M. Xu, X. F. Zang, B. Cao, and Y. M. Zhu, Opt. Lett. 38, 1379 (2013).
[CrossRef]

Zhu, Y. M.

L. Chen, C. M. Gao, J. M. Xu, X. F. Zang, B. Cao, and Y. M. Zhu, Opt. Lett. 38, 1379 (2013).
[CrossRef]

L. Chen, Y. M. Zhu, X. F. Zang, B. Cai, Z. Li, L. Xie, and S. L. Zhuang, Light Sci. Appl. 2, e60 (2013).
[CrossRef]

L. Chen, J. M. Xu, C. M. Gao, X. F. Zang, B. Cai, and Y. M. Zhu, Appl. Phys. Lett. 103, 251105 (2013).
[CrossRef]

Zhuang, S. L.

L. Chen, Y. M. Zhu, X. F. Zang, B. Cai, Z. Li, L. Xie, and S. L. Zhuang, Light Sci. Appl. 2, e60 (2013).
[CrossRef]

Appl. Phys. Lett. (4)

S. S. Harsha, N. Laman, and D. Grischkowsky, Appl. Phys. Lett. 94, 091118 (2009).
[CrossRef]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, Appl. Phys. Lett. 95, 171113 (2009).
[CrossRef]

V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, Appl. Phys. Lett. 100, 231108 (2012).
[CrossRef]

L. Chen, J. M. Xu, C. M. Gao, X. F. Zang, B. Cai, and Y. M. Zhu, Appl. Phys. Lett. 103, 251105 (2013).
[CrossRef]

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (1)

L. Chen, Y. M. Zhu, X. F. Zang, B. Cai, Z. Li, L. Xie, and S. L. Zhuang, Light Sci. Appl. 2, e60 (2013).
[CrossRef]

Opt. Express (7)

Opt. Lett. (5)

Semicond. Sci. Technol. (1)

M. Nagel, P. H. Bolivar, and H. Kurz, Semicond. Sci. Technol. 20, S281 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Structure sketch of single deep groove PPWG structure; (b) the real image of our sample. The geometry parameters of the deep groove are w=400μm and h=1400μm.

Fig. 2.
Fig. 2.

Measured amplitude spectra of ungrooved (black) and grooved (red) waveguide with (a) d=800μm, h=1400μm; (b) d=710μm, h=1400μm; (c) d=555μm, h=1400μm; and (d) d=555μm, h=400μm. The dots have the frequency resolution 4.58 GHz, corresponding to 218.4 ps time-domain waveforms.

Fig. 3.
Fig. 3.

Power transmission spectra for different air gap d. The spectra from d at 800, 710, and 555 μm were calculated from the data shown in Figs. 2(a)2(c). The dots have the frequency resolution 4.58 GHz, corresponding to 218.4 ps time-domain waveforms. Arrows indicate resonance dips (red arrows, Band I; green arrows, Band II; and blue arrows, Band III).

Fig. 4.
Fig. 4.

(a) Positions of resonant dips of Bands I, II, and III as a function of the reciprocal of d (1/d). Solid lines, numerical results; dot, experimental results from power transmission spectra (Fig. 3); and dash line, the light line. Red, green, and blue colors represent Bands I, II, and III, respectively. (b) Measured Q-factor of Bands I, III, and III as a function of the reciprocal of d (1/d from power transmission spectra (Fig. 3).

Fig. 5.
Fig. 5.

(Left) Simulated transmission map as a function of 1/d with (a) h=400μm and (b) h=1400μm. The white solid line is the light line. The white dashed lines are the corresponding examples in the experiment [Figs. 2(a)2(d)]. (Right) Simulated electric field distributions in the grooved waveguides with different 1/d [white dashed lines in (a) and (b)] at resonances. (c) h=400μm, 1/d=1.8mm1, ν=0.444THz; (d) h=1400μm, 1/d=1.25mm1, ν=0.36THz; (e) h=1400μm, 1/d=1.408mm1, ν=0.379THz; (f) h=1400μm, 1/d=1.408mm1, ν=0.398THz; (g) h=1400μm, 1/d=1.8mm1, ν=0.387THz; (h) h=1400μm, 1/d=1.8mm1, ν=0.419THz; and (i) h=1400μm, 1/d=1.8mm1, ν=0.463THz.

Metrics