Abstract

The subtraction imaging in confocal microscopy is demonstrated by using two vector beams with radial and azimuthal polarizations. The longitudinal electric component, which appears near the focus of a radially polarized beam under the tight focusing condition and produces a smaller focal spot, is effectively extracted by the subtraction using an azimuthally polarized beam. This subtraction imaging with vector beams provides the improvement of the lateral resolution in confocal microscopy without the degradation due to the excess subtraction.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ritteweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
    [CrossRef]
  2. R. Heintzmann, Micron 34, 283 (2003).
    [CrossRef]
  3. K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, Phys. Rev. Lett. 99, 228105 (2007).
    [CrossRef]
  4. O. Haeberlé and B. Simon, Opt. Commun. 282, 3657 (2009).
    [CrossRef]
  5. T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).
  6. S. J. Hewlett and T. Wilson, Mach. Vision Applic. 4, 233 (1991).
    [CrossRef]
  7. E. Sánchez-Ortiga, C. J. R. Sheppard, G. Saavedra, M. Martínez-Corral, A. Doblas, and A. Calatayud, Opt. Lett. 37, 1280 (2012).
    [CrossRef]
  8. C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
    [CrossRef]
  9. H. Dehez, M. Piché, and Y. D. Konick, Opt. Express 21, 15912 (2013).
    [CrossRef]
  10. S. Segawa, Y. Kozawa, and S. Sato, Opt. Lett. 39, 3118 (2014).
    [CrossRef]
  11. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
    [CrossRef]
  12. K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000).
    [CrossRef]
  13. Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, Opt. Express 19, 15947 (2011).
    [CrossRef]

2014 (1)

2013 (2)

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
[CrossRef]

H. Dehez, M. Piché, and Y. D. Konick, Opt. Express 21, 15912 (2013).
[CrossRef]

2012 (1)

2011 (1)

2009 (2)

E. Ritteweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
[CrossRef]

O. Haeberlé and B. Simon, Opt. Commun. 282, 3657 (2009).
[CrossRef]

2007 (1)

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, Phys. Rev. Lett. 99, 228105 (2007).
[CrossRef]

2003 (1)

R. Heintzmann, Micron 34, 283 (2003).
[CrossRef]

2000 (2)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000).
[CrossRef]

1991 (1)

S. J. Hewlett and T. Wilson, Mach. Vision Applic. 4, 233 (1991).
[CrossRef]

Brown, T. G.

Calatayud, A.

Dehez, H.

Doblas, A.

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Eggeling, C.

E. Ritteweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
[CrossRef]

Fujita, K.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, Phys. Rev. Lett. 99, 228105 (2007).
[CrossRef]

Ge, J.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
[CrossRef]

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Gu, Z.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
[CrossRef]

Haeberlé, O.

O. Haeberlé and B. Simon, Opt. Commun. 282, 3657 (2009).
[CrossRef]

Han, K. Y.

E. Ritteweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
[CrossRef]

Hao, X.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
[CrossRef]

Hashimoto, N.

Heintzmann, R.

R. Heintzmann, Micron 34, 283 (2003).
[CrossRef]

Hell, S. W.

E. Ritteweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
[CrossRef]

Hewlett, S. J.

S. J. Hewlett and T. Wilson, Mach. Vision Applic. 4, 233 (1991).
[CrossRef]

Hibi, T.

Horanai, H.

Irvine, S. E.

E. Ritteweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
[CrossRef]

Kawano, S.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, Phys. Rev. Lett. 99, 228105 (2007).
[CrossRef]

Kawata, S.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, Phys. Rev. Lett. 99, 228105 (2007).
[CrossRef]

Kobayashi, M.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, Phys. Rev. Lett. 99, 228105 (2007).
[CrossRef]

Konick, Y. D.

Kozawa, Y.

Kuang, C.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
[CrossRef]

Kurihara, M.

Leuchs, G.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Li, H.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
[CrossRef]

Li, S.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
[CrossRef]

Liu, W.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
[CrossRef]

Liu, X.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
[CrossRef]

Martínez-Corral, M.

Nemoto, T.

Piché, M.

Quabis, S.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Ritteweger, E.

E. Ritteweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
[CrossRef]

Saavedra, G.

Sánchez-Ortiga, E.

Sato, A.

Sato, S.

Segawa, S.

Sheppard, C.

T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Sheppard, C. J. R.

Simon, B.

O. Haeberlé and B. Simon, Opt. Commun. 282, 3657 (2009).
[CrossRef]

Wang, Y.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
[CrossRef]

Wilson, T.

S. J. Hewlett and T. Wilson, Mach. Vision Applic. 4, 233 (1991).
[CrossRef]

T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Yamanaka, M.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, Phys. Rev. Lett. 99, 228105 (2007).
[CrossRef]

Yokoyama, H.

Youngworth, K. S.

Mach. Vision Applic. (1)

S. J. Hewlett and T. Wilson, Mach. Vision Applic. 4, 233 (1991).
[CrossRef]

Micron (1)

R. Heintzmann, Micron 34, 283 (2003).
[CrossRef]

Nat. Photonics (1)

E. Ritteweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
[CrossRef]

Opt. Commun. (2)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

O. Haeberlé and B. Simon, Opt. Commun. 282, 3657 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, Phys. Rev. Lett. 99, 228105 (2007).
[CrossRef]

Sci. Rep. (1)

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013).
[CrossRef]

Other (1)

T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Simulation of the subtraction imaging. (a) Intensity distributions at the focal plane of a tightly focused RP beam and (b) comparison of the intensity distributions of the radial component of the RP beam and azimuthal component of the AP beam. The curves are normalized by their peaks; (c) intensity profiles of the PSFs on the x axis for confocal imaging with the LP beam (polarized in the y axis) and for subtraction imaging with the RP and AP beams (γ=0.34); (d) intensity profiles of simulated images shown in (e) and (f); (e) simulated confocal image using a LP beam and (f) simulated subtraction image using RP and AP beams for a sample of nine fluorescent 10 nm dots arranged in a 3 by 3 matrix equally spaced with 170 nm. Scale bars in (e) and (f) are 200 nm.

Fig. 2.
Fig. 2.

Experimental setup for subtraction imaging. (a) Schematic diagram of the setup and (b) polarization conversion using the segmented LCD. LCD: liquid crystal device, DM, dichroic mirror.

Fig. 3.
Fig. 3.

Measured and simulated PSFs. (a), (b) and (c) correspond to the LP, RP, and AP beams, respectively. The insets are measured images of a fluorescent bead of 100 nm. The intensity profile along the dashed line in each inset is plotted by the closed circles. The solid and dashed lines correspond to the numerically simulated PSFs along the horizontal and vertical dashed lines, respectively, in the inset. (d) The experimentally obtained PSFsub with the RP and AP beams with γ=0.50 (solid line) and the PSF for the LP beam (dashed line). The scale bar in the inset is 200 nm.

Fig. 4.
Fig. 4.

Acquired images of aggregated fluorescent beads of 170 nm in diameter. (a) Conventional confocal image using a LP beam; (b) subtraction image using a LP beam (γ=0.36); (c) subtraction image using a RP beam (γ=0.61); (d) intensity profiles along the dashed lines in (a) to (c).

Fig. 5.
Fig. 5.

Microscope images of microtubules in a COS-7 cell. (a) Conventional confocal image with the LP beam; (b) subtraction image with the RP and AP beams (γ=0.41); (c) and (d) magnified images of a part of (a) and (b) indicated by the dashed square; (e) intensity profiles along the broken lines in (c) and (d).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

PSFsub=PSFspotγPSFdoughnut,

Metrics