Abstract

We report, to the best of our knowledge, the first demonstration of octave-spanning supercontinuum generation (SCG) on a silicon chip, spanning from the telecommunications c-band near 1.5 μm to the mid-infrared region beyond 3.6 μm. The SCG presented here is characterized by soliton fission and dispersive radiation across two zero group-velocity dispersion wavelengths. In addition, we numerically investigate the role of multiphoton absorption and free carriers, confirming that these nonlinear loss mechanisms are not detrimental to SCG in this regime.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 4 (2001).
    [CrossRef]
  2. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. S. Russell, J. Opt. Soc. Am. B 19, 2148 (2002).
    [CrossRef]
  3. A. L. Gaeta, Opt. Lett. 27, 924 (2002).
    [CrossRef]
  4. G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, Opt. Express 12, 3471 (2004).
    [CrossRef]
  5. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  6. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, Opt. Express 16, 14938 (2008).
    [CrossRef]
  7. N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. J. Russell, Opt. Express 19, 21003 (2011).
    [CrossRef]
  8. D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Legare, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, Opt. Express 18, 923 (2010).
    [CrossRef]
  9. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, Opt. Lett. 37, 1685 (2012).
    [CrossRef]
  10. I. W. Hsieh, X. G. Chen, X. P. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. N. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, Opt. Express 15, 15242 (2007).
    [CrossRef]
  11. B. Kuyken, X. P. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, Opt. Express 19, 20172 (2011).
    [CrossRef]
  12. U. D. Dave, S. Uvin, B. Kuyken, S. Selvaraja, F. Leo, and G. Roelkens, Opt. Express 21, 32032 (2013).
    [CrossRef]
  13. A. D. Bristow, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 90, 191104 (2007).
    [CrossRef]
  14. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, Opt. Express 11, 1731 (2003).
    [CrossRef]
  15. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, Nat. Photonics 4, 561 (2010).
    [CrossRef]
  16. R. K. W. Lau, M. Menard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, Opt. Lett. 36, 1263 (2011).
    [CrossRef]
  17. X. P. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, Nat. Photonics 4, 557 (2010).
    [CrossRef]
  18. B. Kuyken, X. P. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, Opt. Lett. 36, 4401 (2011).
    [CrossRef]
  19. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2006).
  20. L. H. Yin, Q. Lin, and G. P. Agrawal, Opt. Lett. 32, 391 (2007).
    [CrossRef]
  21. L. H. Yin and G. P. Agrawal, Opt. Lett. 32, 2031 (2007).
    [CrossRef]
  22. F. Gholami, S. Zlatanovic, A. Simic, L. Liu, D. Borlaug, N. Alic, M. P. Nezhad, Y. Fainman, and S. Radic, Appl. Phys. Lett. 99, 081102 (2011).
    [CrossRef]
  23. S. Pearl, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 93, 131102 (2008).
    [CrossRef]
  24. R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
    [CrossRef]
  25. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, Opt. Express 18, 3582 (2010).
    [CrossRef]

2013 (1)

2012 (1)

2011 (5)

2010 (4)

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, Nat. Photonics 4, 561 (2010).
[CrossRef]

X. P. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, Nat. Photonics 4, 557 (2010).
[CrossRef]

D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Legare, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, Opt. Express 18, 923 (2010).
[CrossRef]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, Opt. Express 18, 3582 (2010).
[CrossRef]

2008 (2)

2007 (4)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

2004 (1)

2003 (1)

2002 (2)

2001 (1)

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 4 (2001).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

Agrawal, G. P.

Alic, N.

F. Gholami, S. Zlatanovic, A. Simic, L. Liu, D. Borlaug, N. Alic, M. P. Nezhad, Y. Fainman, and S. Radic, Appl. Phys. Lett. 99, 081102 (2011).
[CrossRef]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, Nat. Photonics 4, 561 (2010).
[CrossRef]

Baets, R.

Bennett, B. R.

R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

Birks, T. A.

Boggio, J. M. C.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, Nat. Photonics 4, 561 (2010).
[CrossRef]

Borlaug, D.

F. Gholami, S. Zlatanovic, A. Simic, L. Liu, D. Borlaug, N. Alic, M. P. Nezhad, Y. Fainman, and S. Radic, Appl. Phys. Lett. 99, 081102 (2011).
[CrossRef]

Bristow, A. D.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

Chen, X. G.

Choi, D. Y.

Chou, C. Y.

Chu, S.

Claps, R.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Dadap, J. I.

Dave, U. D.

Dimitropoulos, D.

Divliansky, I. B.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, Nat. Photonics 4, 561 (2010).
[CrossRef]

Duchesne, D.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Eggleton, B. J.

Fainman, Y.

F. Gholami, S. Zlatanovic, A. Simic, L. Liu, D. Borlaug, N. Alic, M. P. Nezhad, Y. Fainman, and S. Radic, Appl. Phys. Lett. 99, 081102 (2011).
[CrossRef]

Ferrera, M.

Foster, M. A.

Gaeta, A. L.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, Opt. Express 12, 3471 (2004).
[CrossRef]

Gholami, F.

F. Gholami, S. Zlatanovic, A. Simic, L. Liu, D. Borlaug, N. Alic, M. P. Nezhad, Y. Fainman, and S. Radic, Appl. Phys. Lett. 99, 081102 (2011).
[CrossRef]

Granzow, N.

Green, W. M.

Green, W. M. J.

Halir, R.

Han, Y.

Herrmann, J.

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 4 (2001).
[CrossRef]

Hsieh, I. W.

Husakou, A. V.

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 4 (2001).
[CrossRef]

Jalali, B.

Kaivola, M.

Knight, J. C.

Kuyken, B.

Lamont, M. R. E.

Lau, R. K. W.

Legare, F.

Lehtonen, M.

Leo, F.

Levy, J. S.

Lin, Q.

Lipson, M.

Little, B. E.

Liu, L.

F. Gholami, S. Zlatanovic, A. Simic, L. Liu, D. Borlaug, N. Alic, M. P. Nezhad, Y. Fainman, and S. Radic, Appl. Phys. Lett. 99, 081102 (2011).
[CrossRef]

Liu, X. P.

Ludvigsen, H.

Luther-Davies, B.

Madden, S.

Man, T. P. M.

Menard, M.

Mookherjea, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, Nat. Photonics 4, 561 (2010).
[CrossRef]

Morandotti, R.

Moro, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, Nat. Photonics 4, 561 (2010).
[CrossRef]

Moss, D. J.

Nezhad, M. P.

F. Gholami, S. Zlatanovic, A. Simic, L. Liu, D. Borlaug, N. Alic, M. P. Nezhad, Y. Fainman, and S. Radic, Appl. Phys. Lett. 99, 081102 (2011).
[CrossRef]

Okawachi, Y.

Ortigosa-Blanch, A.

Osgood, R. M.

Panoiu, N. C.

Park, J. S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, Nat. Photonics 4, 561 (2010).
[CrossRef]

Pearl, S.

S. Pearl, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 93, 131102 (2008).
[CrossRef]

Peccianti, M.

Poitras, C. B.

Radic, S.

F. Gholami, S. Zlatanovic, A. Simic, L. Liu, D. Borlaug, N. Alic, M. P. Nezhad, Y. Fainman, and S. Radic, Appl. Phys. Lett. 99, 081102 (2011).
[CrossRef]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, Nat. Photonics 4, 561 (2010).
[CrossRef]

Raghunathan, V.

Razzari, L.

Roelkens, G.

Rotenberg, N.

S. Pearl, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 93, 131102 (2008).
[CrossRef]

A. D. Bristow, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

Russell, P. S.

Russell, P. S. J.

Salem, R.

Schmidt, M. A.

Selvaraja, S.

Simic, A.

F. Gholami, S. Zlatanovic, A. Simic, L. Liu, D. Borlaug, N. Alic, M. P. Nezhad, Y. Fainman, and S. Radic, Appl. Phys. Lett. 99, 081102 (2011).
[CrossRef]

Soref, R. A.

R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

Stark, S. P.

Turner-Foster, A. C.

Tverjanovich, A. S.

Uvin, S.

van Driel, H. M.

S. Pearl, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 93, 131102 (2008).
[CrossRef]

A. D. Bristow, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

Vlasov, Y. A.

Wadsworth, W. J.

Wondraczek, L.

Xia, F. N.

Yin, L. H.

Zlatanovic, S.

F. Gholami, S. Zlatanovic, A. Simic, L. Liu, D. Borlaug, N. Alic, M. P. Nezhad, Y. Fainman, and S. Radic, Appl. Phys. Lett. 99, 081102 (2011).
[CrossRef]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, Nat. Photonics 4, 561 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

A. D. Bristow, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

F. Gholami, S. Zlatanovic, A. Simic, L. Liu, D. Borlaug, N. Alic, M. P. Nezhad, Y. Fainman, and S. Radic, Appl. Phys. Lett. 99, 081102 (2011).
[CrossRef]

S. Pearl, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 93, 131102 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, Nat. Photonics 4, 561 (2010).
[CrossRef]

X. P. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, Nat. Photonics 4, 557 (2010).
[CrossRef]

Opt. Express (9)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 4 (2001).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Simulated group-velocity dispersion (GVD) curve for fundamental TE mode of an SOI waveguide with a cross section of 320 nm by 1210 nm, which results in anomalous GVD near the pump wavelength of 2.5 μm and zero-GVD wavelengths near 2.1 and 3.0 μm. The waveguide cross section and the mode profile are shown in the inset.

Fig. 2.
Fig. 2.

Experimentally measured output spectra as the pump is tuned from 2.165 to 2.501 μm, as indicated by the solid line. From bottom to top, the spectra correspond to pump wavelengths of 2.165, 2.251, 2.373, and 2.501 μm, respectively. Dashed lines show the resulting shift of dispersive waves generated near 1.5 and 3.6 μm. Zero-GVD wavelengths at 2.1 and 3.0 μm are indicated by dotted lines.

Fig. 3.
Fig. 3.

Simulated (a) spectral and (b) temporal evolution versus propagation distance along the nanowaveguide for 2.5 μm pump and a coupled peak power of 15 W.

Fig. 4.
Fig. 4.

(a) Simulated SCG output spectra from 2.5 μm pump with peak input power P0=15W. SCG output spectra with P0=60W for (b) no nonlinear loss mechanisms included (black dotted line), (c) only 3PA included (blue dashed line), and (d) full simulation with 3PA, FCA, and FCD included (red solid line). All plots have been normalized to the case with no nonlinear loss mechanisms (black dotted line).

Fig. 5.
Fig. 5.

Simulated SCG output spectra and carrier density along the length of the waveguide after 50 consecutive pulses using 2.5 μm pump with (a), (c) Rp=1GHz and P0=15W, and (b), (d) Rp=80MHz and P0=60W. Dashed blue lines show resulting carrier density for a single pulse.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Az=α2A+m2im+1βmm!mAτm+(1+iω0τ)(iγ|A|2Aγ3PA3Aeff2|A|4A)σ2(1+iμ)NcA,
Nct=γ3PA3hν0|A|6Aeff3Ncτeff,

Metrics