Abstract

Self-phase modulation limits the amplification of short optical pulses because of spatial self-focusing and spectral broadening. Cascaded nonlinearities are theoretically and experimentally investigated for intracavity nonlinearity compensation in a neodymium-doped yttrium-lithium-fluoride (Nd:YLF) regenerative amplifier. Experimental results are in good agreement with simulations. Spectral broadening is significantly reduced, allowing for efficient amplification in a Nd:YLF power amplifier.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, Appl. Phys. B 65, 423 (1997).
    [CrossRef]
  2. M. Siebold, M. Hornung, J. Hein, G. Paunescu, R. Sauerbrey, T. Bergmann, and G. Hollemann, Appl. Phys. B 78, 287 (2004).
  3. M. Lührmann, C. Theobald, R. Wallenstein, and J. A. L’Huillier, Opt. Express 17, 22761 (2009).
  4. J. van Howe, G. Zhu, and C. Xu, Opt. Lett. 31, 1756 (2006).
    [CrossRef]
  5. O. A. Konoplev and D. D. Meyerhofer, IEEE J. Sel. Top. Quantum Electron. 4, 459 (1998).
    [CrossRef]
  6. R. H. Lehmberg, J. Reintjes, and R. C. Eckardt, Appl. Phys. Lett. 30, 487 (1977).
    [CrossRef]
  7. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, Opt. Lett. 17, 28 (1992).
    [CrossRef]
  8. G. I. Stegeman, Quantum Semiclassical Opt. 9, 139 (1997).
    [CrossRef]
  9. K. Beckwitt, F. W. Wise, L. Qian, A. L. Walker, and E. Canto-Said, Opt. Lett. 26, 1696 (2001).
    [CrossRef]
  10. F. Ö. Ilday and F. X. Kärtner, Opt. Lett. 31, 637 (2006).
    [CrossRef]
  11. A. G. White, J. Mlynek, and S. Schiller, Europhys. Lett. 35, 425 (1996).
    [CrossRef]
  12. M. Zavelani-Rossi, G. Cerullo, and V. Magni, IEEE J. Quantum Electron. 34, 61 (1998).
    [CrossRef]
  13. A. V. Okishev and J. D. Zuegel, Appl. Opt. 43, 6180 (2004).
    [CrossRef]
  14. C. Dorrer, I. A. Begishev, A. V. Okishev, and J. D. Zuegel, Opt. Lett. 32, 2143 (2007).
    [CrossRef]
  15. MATLAB R2011b, The MathWorks, Inc., http://www.mathworks.com .
  16. L. Yan, Y.-Q. Liu, and C. H. Lee, IEEE J. Quantum Electron. 30, 2194 (1994).
    [CrossRef]
  17. M. Bache, H. L. Guo, B. Zhou, and X. H. Zeng, Opt. Mater. Express 3, 357 (2013).
    [CrossRef]
  18. R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyansky, R. I. Tugushev, and T. Usmanov, Opt. Commun. 229, 403 (2004).
    [CrossRef]
  19. F. W. Wise and J. Moses, Top. Appl. Phys. 114, 481 (2009).
    [CrossRef]

2013

2009

2007

2006

2004

R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyansky, R. I. Tugushev, and T. Usmanov, Opt. Commun. 229, 403 (2004).
[CrossRef]

A. V. Okishev and J. D. Zuegel, Appl. Opt. 43, 6180 (2004).
[CrossRef]

M. Siebold, M. Hornung, J. Hein, G. Paunescu, R. Sauerbrey, T. Bergmann, and G. Hollemann, Appl. Phys. B 78, 287 (2004).

2001

1998

O. A. Konoplev and D. D. Meyerhofer, IEEE J. Sel. Top. Quantum Electron. 4, 459 (1998).
[CrossRef]

M. Zavelani-Rossi, G. Cerullo, and V. Magni, IEEE J. Quantum Electron. 34, 61 (1998).
[CrossRef]

1997

G. I. Stegeman, Quantum Semiclassical Opt. 9, 139 (1997).
[CrossRef]

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, Appl. Phys. B 65, 423 (1997).
[CrossRef]

1996

A. G. White, J. Mlynek, and S. Schiller, Europhys. Lett. 35, 425 (1996).
[CrossRef]

1994

L. Yan, Y.-Q. Liu, and C. H. Lee, IEEE J. Quantum Electron. 30, 2194 (1994).
[CrossRef]

1992

1977

R. H. Lehmberg, J. Reintjes, and R. C. Eckardt, Appl. Phys. Lett. 30, 487 (1977).
[CrossRef]

Bache, M.

Beckwitt, K.

Begishev, I. A.

Bergmann, T.

M. Siebold, M. Hornung, J. Hein, G. Paunescu, R. Sauerbrey, T. Bergmann, and G. Hollemann, Appl. Phys. B 78, 287 (2004).

Canto-Said, E.

Cerullo, G.

M. Zavelani-Rossi, G. Cerullo, and V. Magni, IEEE J. Quantum Electron. 34, 61 (1998).
[CrossRef]

DeSalvo, R.

Dorrer, C.

Eckardt, R. C.

R. H. Lehmberg, J. Reintjes, and R. C. Eckardt, Appl. Phys. Lett. 30, 487 (1977).
[CrossRef]

Ganeev, R. A.

R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyansky, R. I. Tugushev, and T. Usmanov, Opt. Commun. 229, 403 (2004).
[CrossRef]

Giesen, A.

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, Appl. Phys. B 65, 423 (1997).
[CrossRef]

Guo, H. L.

Hagan, D. J.

Hein, J.

M. Siebold, M. Hornung, J. Hein, G. Paunescu, R. Sauerbrey, T. Bergmann, and G. Hollemann, Appl. Phys. B 78, 287 (2004).

Hollemann, G.

M. Siebold, M. Hornung, J. Hein, G. Paunescu, R. Sauerbrey, T. Bergmann, and G. Hollemann, Appl. Phys. B 78, 287 (2004).

Hönninger, C.

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, Appl. Phys. B 65, 423 (1997).
[CrossRef]

Hornung, M.

M. Siebold, M. Hornung, J. Hein, G. Paunescu, R. Sauerbrey, T. Bergmann, and G. Hollemann, Appl. Phys. B 78, 287 (2004).

Ilday, F. Ö.

Johannsen, I.

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, Appl. Phys. B 65, 423 (1997).
[CrossRef]

Kärtner, F. X.

Keller, U.

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, Appl. Phys. B 65, 423 (1997).
[CrossRef]

Konoplev, O. A.

O. A. Konoplev and D. D. Meyerhofer, IEEE J. Sel. Top. Quantum Electron. 4, 459 (1998).
[CrossRef]

Kulagin, I. A.

R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyansky, R. I. Tugushev, and T. Usmanov, Opt. Commun. 229, 403 (2004).
[CrossRef]

L’Huillier, J. A.

Lee, C. H.

L. Yan, Y.-Q. Liu, and C. H. Lee, IEEE J. Quantum Electron. 30, 2194 (1994).
[CrossRef]

Lehmberg, R. H.

R. H. Lehmberg, J. Reintjes, and R. C. Eckardt, Appl. Phys. Lett. 30, 487 (1977).
[CrossRef]

Liu, Y.-Q.

L. Yan, Y.-Q. Liu, and C. H. Lee, IEEE J. Quantum Electron. 30, 2194 (1994).
[CrossRef]

Lührmann, M.

Magni, V.

M. Zavelani-Rossi, G. Cerullo, and V. Magni, IEEE J. Quantum Electron. 34, 61 (1998).
[CrossRef]

Meyerhofer, D. D.

O. A. Konoplev and D. D. Meyerhofer, IEEE J. Sel. Top. Quantum Electron. 4, 459 (1998).
[CrossRef]

Mlynek, J.

A. G. White, J. Mlynek, and S. Schiller, Europhys. Lett. 35, 425 (1996).
[CrossRef]

Moser, M.

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, Appl. Phys. B 65, 423 (1997).
[CrossRef]

Moses, J.

F. W. Wise and J. Moses, Top. Appl. Phys. 114, 481 (2009).
[CrossRef]

Okishev, A. V.

Paunescu, G.

M. Siebold, M. Hornung, J. Hein, G. Paunescu, R. Sauerbrey, T. Bergmann, and G. Hollemann, Appl. Phys. B 78, 287 (2004).

Qian, L.

Reintjes, J.

R. H. Lehmberg, J. Reintjes, and R. C. Eckardt, Appl. Phys. Lett. 30, 487 (1977).
[CrossRef]

Ryasnyansky, A. I.

R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyansky, R. I. Tugushev, and T. Usmanov, Opt. Commun. 229, 403 (2004).
[CrossRef]

Sauerbrey, R.

M. Siebold, M. Hornung, J. Hein, G. Paunescu, R. Sauerbrey, T. Bergmann, and G. Hollemann, Appl. Phys. B 78, 287 (2004).

Schiller, S.

A. G. White, J. Mlynek, and S. Schiller, Europhys. Lett. 35, 425 (1996).
[CrossRef]

Sheik-Bahae, M.

Siebold, M.

M. Siebold, M. Hornung, J. Hein, G. Paunescu, R. Sauerbrey, T. Bergmann, and G. Hollemann, Appl. Phys. B 78, 287 (2004).

Stegeman, G.

Stegeman, G. I.

G. I. Stegeman, Quantum Semiclassical Opt. 9, 139 (1997).
[CrossRef]

Theobald, C.

Tugushev, R. I.

R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyansky, R. I. Tugushev, and T. Usmanov, Opt. Commun. 229, 403 (2004).
[CrossRef]

Usmanov, T.

R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyansky, R. I. Tugushev, and T. Usmanov, Opt. Commun. 229, 403 (2004).
[CrossRef]

van Howe, J.

Van Stryland, E. W.

Vanherzeele, H.

Walker, A. L.

Wallenstein, R.

White, A. G.

A. G. White, J. Mlynek, and S. Schiller, Europhys. Lett. 35, 425 (1996).
[CrossRef]

Wise, F. W.

Xu, C.

Yan, L.

L. Yan, Y.-Q. Liu, and C. H. Lee, IEEE J. Quantum Electron. 30, 2194 (1994).
[CrossRef]

Zavelani-Rossi, M.

M. Zavelani-Rossi, G. Cerullo, and V. Magni, IEEE J. Quantum Electron. 34, 61 (1998).
[CrossRef]

Zeng, X. H.

Zhang, G.

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, Appl. Phys. B 65, 423 (1997).
[CrossRef]

Zhou, B.

Zhu, G.

Zuegel, J. D.

Appl. Opt.

Appl. Phys. B

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, Appl. Phys. B 65, 423 (1997).
[CrossRef]

M. Siebold, M. Hornung, J. Hein, G. Paunescu, R. Sauerbrey, T. Bergmann, and G. Hollemann, Appl. Phys. B 78, 287 (2004).

Appl. Phys. Lett.

R. H. Lehmberg, J. Reintjes, and R. C. Eckardt, Appl. Phys. Lett. 30, 487 (1977).
[CrossRef]

Europhys. Lett.

A. G. White, J. Mlynek, and S. Schiller, Europhys. Lett. 35, 425 (1996).
[CrossRef]

IEEE J. Quantum Electron.

M. Zavelani-Rossi, G. Cerullo, and V. Magni, IEEE J. Quantum Electron. 34, 61 (1998).
[CrossRef]

L. Yan, Y.-Q. Liu, and C. H. Lee, IEEE J. Quantum Electron. 30, 2194 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

O. A. Konoplev and D. D. Meyerhofer, IEEE J. Sel. Top. Quantum Electron. 4, 459 (1998).
[CrossRef]

Opt. Commun.

R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyansky, R. I. Tugushev, and T. Usmanov, Opt. Commun. 229, 403 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater. Express

Quantum Semiclassical Opt.

G. I. Stegeman, Quantum Semiclassical Opt. 9, 139 (1997).
[CrossRef]

Top. Appl. Phys.

F. W. Wise and J. Moses, Top. Appl. Phys. 114, 481 (2009).
[CrossRef]

Other

MATLAB R2011b, The MathWorks, Inc., http://www.mathworks.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Regenerative amplifier layout. HWP, half-wave plate; QWP, quarter-wave plate; BBO, beta-barium borate. PD, photodiode measuring the intracavity pulse train.

Fig. 2.
Fig. 2.

Simulated normalized spectral density [spatially averaged modulus square of the Fourier transform of E(r,t) with respect to t] without self-phase modulation (SPM) (black line), with uncompensated SPM (solid red line), and with compensated SPM (dashed red line) at output energies of 0.5 and 2.0 mJ.

Fig. 3.
Fig. 3.

Measured normalized spectral density without (continuous lines) and with (dashed line) compensation for output energies of 0.5 mJ (blue lines) and 0.8 mJ (red lines) for the two regenerative amplifiers RA1 and RA2.

Fig. 4.
Fig. 4.

RA1 output energy (red line) and intracavity SHG energy measured behind mirror M2 (solid blue line) compared to arbitrarily scaled calculated SHG efficiency (dashed blue line).

Fig. 5.
Fig. 5.

PA gain versus RA output energy without (solid black circles) and with SPM compensation in the RA (solid gray squares). Examples of RA-buildup pulse trains are shown in the inset, where the vertical gray line indicates ejection out of the cavity: (A), (B), and (C) correspond to RA output energy of 0.4, 0.8, and 0.4 mJ, respectively. The RA energy is varied by increasing the pump-diode current with ejection timing kept constant. The arrows on each dashed line indicate the direction of increasing current, i.e., increasing nonlinear phase.

Metrics