Abstract

We propose and demonstrate an intensity-demodulated fiber-optic ultrasonic sensor system that can be self-adaptive to large quasi-static background strain perturbations. The sensor system is based on a fiber ring laser (FRL) whose laser cavity includes a pair of fiber Bragg gratings (FBGs). Self-adaptive ultrasonic detection is achieved by a tandem design where the two FBGs are engineered to have differential spectral responses to ultrasonic waves and are installed side-by-side at the same location on a structure. As a result, ultrasonic waves lead to relative spectral shifts of the FBGs and modulations to the cold-cavity loss of the FRL. Ultrasonic waves can then be detected directly from the laser intensity variations in response to the cold-cavity loss modulation. The sensor system is insensitive to quasi-static background strains because they lead to identical responses of the tandem FBGs. Based on the principle, a FRL sensor system was demonstrated and tested for adaptive ultrasonic detection when large static strains as well as dynamic sinusoidal vibrations were applied to the sensor.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. E. Mix, Introduction to Nondestructive Testing: A Training Guide (Wiley, 2005).
  2. D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, Smart Mater. Struct. 12, 122 (2003).
  3. I. M. Perez, H. L. Cui, and E. Udd, Proc. SPIE 4328, 209 (2001).
    [CrossRef]
  4. Q. Wu and Y. Okabe, Opt. Express 20, 28353 (2012).
    [CrossRef]
  5. P. Fomitchov and S. Krishnaswamy, Opt. Eng. 42, 956 (2003).
    [CrossRef]
  6. H. Tsuda, Compos. Sci. Technol. 66, 676 (2006).
    [CrossRef]
  7. D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, Opt. Express 16, 1945 (2008).
    [CrossRef]
  8. H. Tsuda, E. Sato, T. Nakajima, H. Nakamura, T. Arakawa, H. Shiono, M. Minato, H. Kurabayashi, and A. Sato, Opt. Lett. 34, 2942 (2009).
    [CrossRef]
  9. Y. Qiao, Y. Zhou, and S. Krishnaswamy, Appl. Opt. 45, 5132 (2006).
    [CrossRef]
  10. M. Han, T. Q. Liu, L. L. Hu, and Q. Zhang, Opt. Express 21, 30473 (2013).
  11. T. Q. Liu and M. Han, IEEE Sens. J. 12, 2368 (2012).
    [CrossRef]
  12. W. W. Morey, J. R. Dunphy, and G. Meltz, Proc. SPIE 1586, 216 (1992).
    [CrossRef]

2013

M. Han, T. Q. Liu, L. L. Hu, and Q. Zhang, Opt. Express 21, 30473 (2013).

2012

T. Q. Liu and M. Han, IEEE Sens. J. 12, 2368 (2012).
[CrossRef]

Q. Wu and Y. Okabe, Opt. Express 20, 28353 (2012).
[CrossRef]

2009

2008

2006

2003

P. Fomitchov and S. Krishnaswamy, Opt. Eng. 42, 956 (2003).
[CrossRef]

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, Smart Mater. Struct. 12, 122 (2003).

2001

I. M. Perez, H. L. Cui, and E. Udd, Proc. SPIE 4328, 209 (2001).
[CrossRef]

1992

W. W. Morey, J. R. Dunphy, and G. Meltz, Proc. SPIE 1586, 216 (1992).
[CrossRef]

Arakawa, T.

Betz, D. C.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, Smart Mater. Struct. 12, 122 (2003).

Cui, H. L.

I. M. Perez, H. L. Cui, and E. Udd, Proc. SPIE 4328, 209 (2001).
[CrossRef]

Culshaw, B.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, Smart Mater. Struct. 12, 122 (2003).

Dunphy, J. R.

W. W. Morey, J. R. Dunphy, and G. Meltz, Proc. SPIE 1586, 216 (1992).
[CrossRef]

Fomitchov, P.

P. Fomitchov and S. Krishnaswamy, Opt. Eng. 42, 956 (2003).
[CrossRef]

Galzerano, G.

Gatti, D.

Han, M.

M. Han, T. Q. Liu, L. L. Hu, and Q. Zhang, Opt. Express 21, 30473 (2013).

T. Q. Liu and M. Han, IEEE Sens. J. 12, 2368 (2012).
[CrossRef]

Hu, L. L.

M. Han, T. Q. Liu, L. L. Hu, and Q. Zhang, Opt. Express 21, 30473 (2013).

Janner, D.

Krishnaswamy, S.

Y. Qiao, Y. Zhou, and S. Krishnaswamy, Appl. Opt. 45, 5132 (2006).
[CrossRef]

P. Fomitchov and S. Krishnaswamy, Opt. Eng. 42, 956 (2003).
[CrossRef]

Kurabayashi, H.

Laporta, P.

Liu, T. Q.

M. Han, T. Q. Liu, L. L. Hu, and Q. Zhang, Opt. Express 21, 30473 (2013).

T. Q. Liu and M. Han, IEEE Sens. J. 12, 2368 (2012).
[CrossRef]

Longhi, S.

Meltz, G.

W. W. Morey, J. R. Dunphy, and G. Meltz, Proc. SPIE 1586, 216 (1992).
[CrossRef]

Minato, M.

Mix, P. E.

P. E. Mix, Introduction to Nondestructive Testing: A Training Guide (Wiley, 2005).

Morey, W. W.

W. W. Morey, J. R. Dunphy, and G. Meltz, Proc. SPIE 1586, 216 (1992).
[CrossRef]

Nakajima, T.

Nakamura, H.

Okabe, Y.

Perez, I. M.

I. M. Perez, H. L. Cui, and E. Udd, Proc. SPIE 4328, 209 (2001).
[CrossRef]

Qiao, Y.

Sato, A.

Sato, E.

Shiono, H.

Staszewski, W. J.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, Smart Mater. Struct. 12, 122 (2003).

Thursby, G.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, Smart Mater. Struct. 12, 122 (2003).

Tsuda, H.

Udd, E.

I. M. Perez, H. L. Cui, and E. Udd, Proc. SPIE 4328, 209 (2001).
[CrossRef]

Wu, Q.

Zhang, Q.

M. Han, T. Q. Liu, L. L. Hu, and Q. Zhang, Opt. Express 21, 30473 (2013).

Zhou, Y.

Appl. Opt.

Compos. Sci. Technol.

H. Tsuda, Compos. Sci. Technol. 66, 676 (2006).
[CrossRef]

IEEE Sens. J.

T. Q. Liu and M. Han, IEEE Sens. J. 12, 2368 (2012).
[CrossRef]

Opt. Eng.

P. Fomitchov and S. Krishnaswamy, Opt. Eng. 42, 956 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

I. M. Perez, H. L. Cui, and E. Udd, Proc. SPIE 4328, 209 (2001).
[CrossRef]

W. W. Morey, J. R. Dunphy, and G. Meltz, Proc. SPIE 1586, 216 (1992).
[CrossRef]

Smart Mater. Struct.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, Smart Mater. Struct. 12, 122 (2003).

Other

P. E. Mix, Introduction to Nondestructive Testing: A Training Guide (Wiley, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematics of the FRL sensor system. (b) Schematic of the reflection spectra of short sensing FBG and the long adapting FBG and (c) peak FBG wavelength shifts caused by an ultrasonic pressure wave of speed 4000m/s and peak pressure 1 MPa as functions of the ultrasonic frequency.

Fig. 2.
Fig. 2.

Schematics of (a) the experimental setup and (b) the cantilever beam. (c) Measured reflection spectra of the short sensing and long adapting FBGs.

Fig. 3.
Fig. 3.

(a) Laser spectra under different strain levels. Curve (i) is the spectrum when no strain was applied. (b) Ultrasonic signals detected by the FRL sensor and the piezoelectric sensor at different strain levels.

Fig. 4.
Fig. 4.

(a) Laser wavelength versus time when 10 Hz strains were applied on the FBGs. (b) and (c) Ultrasonic signals detected by the FRL sensor captured from the oscilloscope. (d) Electric spectra of the detected signal before the BPF of the FRL sensor system shown in Fig. 2(a).

Metrics