Abstract

We fabricate a two-stage wavelength converter in silicon by cascading a microring wavelength mixer with a five-ring coupled-resonator filter. A p-i-n diode is incorporated into the microring for electronic carrier sweep-out, and microheaters are incorporated into the filter for tunability. The generated idler wavelength is effectively separated from the input pump and signal, with nearly 50 dB of suppression.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Mathlouthi, H. Rong, and M. Paniccia, Opt. Express 16, 16735 (2008).
    [CrossRef]
  2. A. Biberman, B. G. Lee, A. Turner-Foster, M. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, Opt. Express 18, 18047 (2010).
    [CrossRef]
  3. N. Matsuda, T. Kato, K. Harada, H. Takesue, E. Kuramochi, H. Taniyama, and M. Notomi, Opt. Express 19, 19861 (2011).
    [CrossRef]
  4. A. Gajda, L. Zimmermann, M. Jazayerifar, G. Winzer, H. Tian, and R. Elschner, Opt. Express 20, 13100 (2012).
    [CrossRef]
  5. K. Wang and A. Foster, Opt. Lett. 37, 1331 (2012).
    [CrossRef]
  6. J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, IEEE Photon. Technol. Lett. 25, 1699 (2013).
    [CrossRef]
  7. J. R. Ong, R. Kumar, and S. Mookherjea, IEEE Photon. Technol. Lett. 25, 1543 (2013).
    [CrossRef]
  8. V. R. Almeida, R. Panepucci, and M. Lipson, Opt. Lett. 28, 1302 (2003).
    [CrossRef]
  9. D. M. Pozar, Microwave Engineering (Wiley, 2009).
  10. S. Mookherjea and M. A. Schneider, Opt. Express 16, 15130 (2008).
    [CrossRef]
  11. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, Opt. Express 15, 11934 (2007).
    [CrossRef]
  12. P. Dong, N. Feng, D. Feng, W. Qian, H. Laing, D. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Tolicer, R. Menendez, T. K. Woodward, and M. Asghari, Opt. Express 18, 23784 (2010).
    [CrossRef]
  13. X. Luo, J. Song, S. Feng, A. W. Poon, T. Liow, M. Yu, G. Q. Lo, and D. Kwong, IEEE Photon. Technol. Lett. 24, 821 (2012).
    [CrossRef]
  14. M. Cooper, G. Gupta, M. A. Schneider, W. M. J. Green, S. Assefa, F. Xia, D. K. Gifford, and S. Mookherjea, Opt. Lett. 35, 3030 (2010).
    [CrossRef]

2013 (2)

J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, IEEE Photon. Technol. Lett. 25, 1699 (2013).
[CrossRef]

J. R. Ong, R. Kumar, and S. Mookherjea, IEEE Photon. Technol. Lett. 25, 1543 (2013).
[CrossRef]

2012 (3)

2011 (1)

2010 (3)

2008 (2)

2007 (1)

2003 (1)

Agarwal, A.

Aguinaldo, R.

J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, IEEE Photon. Technol. Lett. 25, 1699 (2013).
[CrossRef]

Almeida, V. R.

Asghari, M.

Assefa, S.

Banwell, T.

Bergman, K.

Biberman, A.

Cooper, M.

Dong, P.

Elschner, R.

Feng, D.

Feng, N.

Feng, S.

X. Luo, J. Song, S. Feng, A. W. Poon, T. Liow, M. Yu, G. Q. Lo, and D. Kwong, IEEE Photon. Technol. Lett. 24, 821 (2012).
[CrossRef]

Foster, A.

Foster, M.

Gaeta, A. L.

Gajda, A.

Gifford, D. K.

Green, W. M. J.

Gupta, G.

Harada, K.

Jazayerifar, M.

Kato, T.

Kumar, R.

J. R. Ong, R. Kumar, and S. Mookherjea, IEEE Photon. Technol. Lett. 25, 1543 (2013).
[CrossRef]

J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, IEEE Photon. Technol. Lett. 25, 1699 (2013).
[CrossRef]

Kuramochi, E.

Kwong, D.

X. Luo, J. Song, S. Feng, A. W. Poon, T. Liow, M. Yu, G. Q. Lo, and D. Kwong, IEEE Photon. Technol. Lett. 24, 821 (2012).
[CrossRef]

Laing, H.

Lee, B. G.

Lee, D.

Liow, T.

X. Luo, J. Song, S. Feng, A. W. Poon, T. Liow, M. Yu, G. Q. Lo, and D. Kwong, IEEE Photon. Technol. Lett. 24, 821 (2012).
[CrossRef]

Lipson, M.

Lo, G. Q.

X. Luo, J. Song, S. Feng, A. W. Poon, T. Liow, M. Yu, G. Q. Lo, and D. Kwong, IEEE Photon. Technol. Lett. 24, 821 (2012).
[CrossRef]

Luff, B. J.

Luo, X.

X. Luo, J. Song, S. Feng, A. W. Poon, T. Liow, M. Yu, G. Q. Lo, and D. Kwong, IEEE Photon. Technol. Lett. 24, 821 (2012).
[CrossRef]

Mathlouthi, W.

Matsuda, N.

Menendez, R.

Mookherjea, S.

J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, IEEE Photon. Technol. Lett. 25, 1699 (2013).
[CrossRef]

J. R. Ong, R. Kumar, and S. Mookherjea, IEEE Photon. Technol. Lett. 25, 1543 (2013).
[CrossRef]

M. Cooper, G. Gupta, M. A. Schneider, W. M. J. Green, S. Assefa, F. Xia, D. K. Gifford, and S. Mookherjea, Opt. Lett. 35, 3030 (2010).
[CrossRef]

S. Mookherjea and M. A. Schneider, Opt. Express 16, 15130 (2008).
[CrossRef]

Notomi, M.

Ong, J. R.

J. R. Ong, R. Kumar, and S. Mookherjea, IEEE Photon. Technol. Lett. 25, 1543 (2013).
[CrossRef]

J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, IEEE Photon. Technol. Lett. 25, 1699 (2013).
[CrossRef]

Panepucci, R.

Paniccia, M.

Poon, A. W.

X. Luo, J. Song, S. Feng, A. W. Poon, T. Liow, M. Yu, G. Q. Lo, and D. Kwong, IEEE Photon. Technol. Lett. 24, 821 (2012).
[CrossRef]

Pozar, D. M.

D. M. Pozar, Microwave Engineering (Wiley, 2009).

Qian, W.

Rong, H.

Rooks, M.

Schneider, M. A.

Sekaric, L.

Song, J.

X. Luo, J. Song, S. Feng, A. W. Poon, T. Liow, M. Yu, G. Q. Lo, and D. Kwong, IEEE Photon. Technol. Lett. 24, 821 (2012).
[CrossRef]

Takesue, H.

Taniyama, H.

Tian, H.

Tolicer, P.

Turner-Foster, A.

Vlasov, Y.

Wang, K.

Winzer, G.

Woodward, T. K.

Xia, F.

Yu, M.

X. Luo, J. Song, S. Feng, A. W. Poon, T. Liow, M. Yu, G. Q. Lo, and D. Kwong, IEEE Photon. Technol. Lett. 24, 821 (2012).
[CrossRef]

Zimmermann, L.

IEEE Photon. Technol. Lett. (3)

J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, IEEE Photon. Technol. Lett. 25, 1699 (2013).
[CrossRef]

J. R. Ong, R. Kumar, and S. Mookherjea, IEEE Photon. Technol. Lett. 25, 1543 (2013).
[CrossRef]

X. Luo, J. Song, S. Feng, A. W. Poon, T. Liow, M. Yu, G. Q. Lo, and D. Kwong, IEEE Photon. Technol. Lett. 24, 821 (2012).
[CrossRef]

Opt. Express (7)

Opt. Lett. (3)

Other (1)

D. M. Pozar, Microwave Engineering (Wiley, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Frequency spectrum of an ideal (upconversion) mixer generating a single radio frequency (RF) tone at the output, with built-in rejection for the lower sideband labeled LO+IF. The local oscillator (LO) is equivalent in function to the optical pump, while the intermediate frequency (IF) serves as the input to the mixer, equivalent to the optical signal. Dotted lines indicate where spectral lines are suppressed. (b) Typical optical spectrum at output port of a waveguide mixer showing desired and undesired spectral lines. ωp and ωs are the pump and signal frequencies, respectively.

Fig. 2.
Fig. 2.

Optical microscope image of the two-stage wavelength converter. Pump and signal wavelengths were input from port 1 and coupled into the mixer microring. The 20 μm radius mixer ring has built-in p-i-n diodes for free-carrier removal. The generated idler wavelength was filtered by the five-ring coupled-resonator filter and exited through port 3. Doped silicon strips adjacent to the rings form microheaters that allow fine-tuning of the filter passbands. These are invisible to the optical microscope and are colored in the figure for visual aid. Port 4 allows diagnostic monitoring of the spectral output of the wavelength mixer. Inset: Waveguide cross-section dimensions.

Fig. 3.
Fig. 3.

Transmission spectra of the five-ring coupled-resonator filter (red) and the single microring wavelength mixer (green). Ring radii are chosen such that the free-spectral range (FSR) of the filter is 1.5× that of the mixer. The inadvertent presence of the higher-order TM mode gives rise to transmission bands in between the fundamental TE mode passbands; however, the TM mode does not affect this demonstration.

Fig. 4.
Fig. 4.

Four-wave mixing spectra as measured from output port 3 (green) and monitor port 4 (blue), which represent the filtered and unfiltered cases, respectively. The dotted line is the port 4 transmission spectrum, which has been overlaid to highlight the filter contrast. Pump and signal power levels have been suppressed by 49.9 and 44.3 dB, respectively. The idler wavelength, which is in the passband of the filter, incurs a 2.4dB attenuation after filtering.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

TpassTstop=exp[NπRα/|κ|]exp[2Ncosh1(1/|κ|)],

Metrics