Abstract

We propose and demonstrate a technique to stabilize pulse generation based on gain-induced four wave mixing (FWM) via injection locking with no feedback. Robust and low-phase noise pulse generation was achieved. Pulse-train generation from 230 MHz to 76GHz with a linewidth of 1Hz is experimentally demonstrated. The injection locking effectively narrows the linewidth of the generated pulse by four orders of magnitude. The fiber ring cavity reduces the sideband phase noise by 100 times and suppresses the residual injection signal by three orders of magnitude.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Copmany and D. Novak, Nat. Photonics 1, 319 (2007).
    [CrossRef]
  2. U. Keller, Nature 424, 831 (2003).
    [CrossRef]
  3. C. Wu and N. K. Dutta, IEEE J. Quantum Electron. 36, 145 (2000).
    [CrossRef]
  4. L. Duan, C. J. K. Richardson, Z. Hu, M. Dagenais, and J. Goldhar, IEEE Photon. Technol. Lett. 14, 840 (2002).
    [CrossRef]
  5. L. A. Johansson and A. J. Seeds, J. Lightwave Technol. 21, 511 (2003).
    [CrossRef]
  6. D. S. Wu, R. Slavik, G. Marra, and D. J. Richardson, J. Lightwave Technol. 31, 2287 (2013).
    [CrossRef]
  7. X. Fang, P. Wai, H. Y. Tam, X. Dong, and C. Lu, Opt. Eng. 49, 74201 (2010).
    [CrossRef]
  8. J. Zhuang and S. Chan, Opt. Lett. 38, 344 (2013).
    [CrossRef]
  9. F. Li and A. S. Helmy, Opt. Lett. 38, 1241 (2013).
    [CrossRef]
  10. S. Jiang, D. E. Leaird, and A. M. Weiner, IEEE J. Quantum Electron. 42, 657 (2006).
    [CrossRef]
  11. F. Li and A. S. Helmy, Opt. Lett. 38, 4542 (2013).
    [CrossRef]
  12. X. Chen, Z. Deng, and J. P. Yao, IEEE Trans. Microw. Theory Tech. 54, 804 (2006).
    [CrossRef]

2013 (4)

2010 (1)

X. Fang, P. Wai, H. Y. Tam, X. Dong, and C. Lu, Opt. Eng. 49, 74201 (2010).
[CrossRef]

2007 (1)

J. Copmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

2006 (2)

S. Jiang, D. E. Leaird, and A. M. Weiner, IEEE J. Quantum Electron. 42, 657 (2006).
[CrossRef]

X. Chen, Z. Deng, and J. P. Yao, IEEE Trans. Microw. Theory Tech. 54, 804 (2006).
[CrossRef]

2003 (2)

2002 (1)

L. Duan, C. J. K. Richardson, Z. Hu, M. Dagenais, and J. Goldhar, IEEE Photon. Technol. Lett. 14, 840 (2002).
[CrossRef]

2000 (1)

C. Wu and N. K. Dutta, IEEE J. Quantum Electron. 36, 145 (2000).
[CrossRef]

Chan, S.

Chen, X.

X. Chen, Z. Deng, and J. P. Yao, IEEE Trans. Microw. Theory Tech. 54, 804 (2006).
[CrossRef]

Copmany, J.

J. Copmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

Dagenais, M.

L. Duan, C. J. K. Richardson, Z. Hu, M. Dagenais, and J. Goldhar, IEEE Photon. Technol. Lett. 14, 840 (2002).
[CrossRef]

Deng, Z.

X. Chen, Z. Deng, and J. P. Yao, IEEE Trans. Microw. Theory Tech. 54, 804 (2006).
[CrossRef]

Dong, X.

X. Fang, P. Wai, H. Y. Tam, X. Dong, and C. Lu, Opt. Eng. 49, 74201 (2010).
[CrossRef]

Duan, L.

L. Duan, C. J. K. Richardson, Z. Hu, M. Dagenais, and J. Goldhar, IEEE Photon. Technol. Lett. 14, 840 (2002).
[CrossRef]

Dutta, N. K.

C. Wu and N. K. Dutta, IEEE J. Quantum Electron. 36, 145 (2000).
[CrossRef]

Fang, X.

X. Fang, P. Wai, H. Y. Tam, X. Dong, and C. Lu, Opt. Eng. 49, 74201 (2010).
[CrossRef]

Goldhar, J.

L. Duan, C. J. K. Richardson, Z. Hu, M. Dagenais, and J. Goldhar, IEEE Photon. Technol. Lett. 14, 840 (2002).
[CrossRef]

Helmy, A. S.

Hu, Z.

L. Duan, C. J. K. Richardson, Z. Hu, M. Dagenais, and J. Goldhar, IEEE Photon. Technol. Lett. 14, 840 (2002).
[CrossRef]

Jiang, S.

S. Jiang, D. E. Leaird, and A. M. Weiner, IEEE J. Quantum Electron. 42, 657 (2006).
[CrossRef]

Johansson, L. A.

Keller, U.

U. Keller, Nature 424, 831 (2003).
[CrossRef]

Leaird, D. E.

S. Jiang, D. E. Leaird, and A. M. Weiner, IEEE J. Quantum Electron. 42, 657 (2006).
[CrossRef]

Li, F.

Lu, C.

X. Fang, P. Wai, H. Y. Tam, X. Dong, and C. Lu, Opt. Eng. 49, 74201 (2010).
[CrossRef]

Marra, G.

Novak, D.

J. Copmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

Richardson, C. J. K.

L. Duan, C. J. K. Richardson, Z. Hu, M. Dagenais, and J. Goldhar, IEEE Photon. Technol. Lett. 14, 840 (2002).
[CrossRef]

Richardson, D. J.

Seeds, A. J.

Slavik, R.

Tam, H. Y.

X. Fang, P. Wai, H. Y. Tam, X. Dong, and C. Lu, Opt. Eng. 49, 74201 (2010).
[CrossRef]

Wai, P.

X. Fang, P. Wai, H. Y. Tam, X. Dong, and C. Lu, Opt. Eng. 49, 74201 (2010).
[CrossRef]

Weiner, A. M.

S. Jiang, D. E. Leaird, and A. M. Weiner, IEEE J. Quantum Electron. 42, 657 (2006).
[CrossRef]

Wu, C.

C. Wu and N. K. Dutta, IEEE J. Quantum Electron. 36, 145 (2000).
[CrossRef]

Wu, D. S.

Yao, J. P.

X. Chen, Z. Deng, and J. P. Yao, IEEE Trans. Microw. Theory Tech. 54, 804 (2006).
[CrossRef]

Zhuang, J.

IEEE J. Quantum Electron. (2)

C. Wu and N. K. Dutta, IEEE J. Quantum Electron. 36, 145 (2000).
[CrossRef]

S. Jiang, D. E. Leaird, and A. M. Weiner, IEEE J. Quantum Electron. 42, 657 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. Duan, C. J. K. Richardson, Z. Hu, M. Dagenais, and J. Goldhar, IEEE Photon. Technol. Lett. 14, 840 (2002).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

X. Chen, Z. Deng, and J. P. Yao, IEEE Trans. Microw. Theory Tech. 54, 804 (2006).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Photonics (1)

J. Copmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

Nature (1)

U. Keller, Nature 424, 831 (2003).
[CrossRef]

Opt. Eng. (1)

X. Fang, P. Wai, H. Y. Tam, X. Dong, and C. Lu, Opt. Eng. 49, 74201 (2010).
[CrossRef]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup for all optical microwave generation based gain-induce FWM. PC, polarization controller; BPF, band pass filter; FFL, femto-fiber laser; ESA, electrical spectrum analyzer; and OSA, optical spectrum analyzer.

Fig. 2.
Fig. 2.

Measured (a) spectra of the FFL laser and two DFB laser outputs. (b) Linewidth of the unlock, locked beating signal, and the generated pulse.

Fig. 3.
Fig. 3.

(a) Measured single sideband noise characteristics of the output optical pulse and injection locked beating signal. (b) Zoomed linewidth measurement of the generated pulse.

Fig. 4.
Fig. 4.

Generated pulse trace at different repetition rates: (a) 230 MHz, (b) 1.15GHz, and (c) 5GHz. (d) The corresponding electrical spectrum of the pulse at 5 GHz.

Fig. 5.
Fig. 5.

Measured (a) optical spectrum and (b) eye-diagram of the generated 76 GHz optical pulse.

Metrics