Abstract

We introduce plasmonic waveguides based on metal loading of silicon-on-insulator (SOI) substrates. Here slab waveguide modes hybridize with the plasmonic modes of either a metal nanowire or a slot in a metal film. By tapering a single dimension of either structure, the resulting hybrid mode can be converted from photon-like to plasmon-like, allowing up to millimeter-range transport and rapid nanoscale focusing down to mode areas λ2/400. Metal loading is achievable with a single lithography step directly on SOI without the need for etching and, thus, opens practical possibilities for silicon nanoplasmonics.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
    [CrossRef]
  2. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
    [CrossRef]
  3. D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 4, 83 (2010).
    [CrossRef]
  4. D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 8, 13 (2013).
    [CrossRef]
  5. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, Nat. Commun. 2, 331 (2011).
    [CrossRef]
  6. I. Goykhman, B. Desiatov, and U. Levy, Appl. Phys. Lett. 97, 141106 (2010).
    [CrossRef]
  7. V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, Nanophotonics 1, 1 (2012).
  8. M. Stockman, Phys. Rev. Lett. 93, 137404 (2004).
    [CrossRef]
  9. P. B. Johnson and R. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  10. J. D. Jackson, Classical Electrodynamics (Wiley, 1999) pp. 387–389.
  11. D. Dai and S. He, Opt. Express 17, 16646 (2009).
    [CrossRef]
  12. L. Gao, L. Tang, F. Hu, R. Guo, X. Wang, and Z. Zhou, Opt. Express 20, 11487 (2012).
    [CrossRef]
  13. Y. Bian, Z. Zheng, X. Zhao, L. Liu, Y. Su, J. Liu, J. Zhu, and T. Zhou, Phys. Status Solidi 210, 1424 (2013).
    [CrossRef]
  14. E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, Phys. Rev. Lett. 102, 203904 (2009).
    [CrossRef]
  15. T. Tamir, Topics in Applied Physics (Springer-Verlag, 1979) pp. 62–66.
  16. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, New J. Phys. 10, 105018 (2008).
    [CrossRef]
  17. G. Veronis and S. Fan, Opt. Lett. 30, 3359 (2005).
    [CrossRef]
  18. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997).
    [CrossRef]
  19. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984) pp. 290–292.
  20. D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, J. Appl. Phys. 104, 034311 (2008).
    [CrossRef]

2013 (2)

D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 8, 13 (2013).
[CrossRef]

Y. Bian, Z. Zheng, X. Zhao, L. Liu, Y. Su, J. Liu, J. Zhu, and T. Zhou, Phys. Status Solidi 210, 1424 (2013).
[CrossRef]

2012 (2)

L. Gao, L. Tang, F. Hu, R. Guo, X. Wang, and Z. Zhou, Opt. Express 20, 11487 (2012).
[CrossRef]

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, Nanophotonics 1, 1 (2012).

2011 (1)

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, Nat. Commun. 2, 331 (2011).
[CrossRef]

2010 (2)

I. Goykhman, B. Desiatov, and U. Levy, Appl. Phys. Lett. 97, 141106 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 4, 83 (2010).
[CrossRef]

2009 (2)

D. Dai and S. He, Opt. Express 17, 16646 (2009).
[CrossRef]

E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef]

2008 (3)

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, New J. Phys. 10, 105018 (2008).
[CrossRef]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, J. Appl. Phys. 104, 034311 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

2005 (2)

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef]

G. Veronis and S. Fan, Opt. Lett. 30, 3359 (2005).
[CrossRef]

2004 (1)

M. Stockman, Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef]

1997 (1)

1972 (1)

P. B. Johnson and R. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Bartal, G.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, Nat. Commun. 2, 331 (2011).
[CrossRef]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, New J. Phys. 10, 105018 (2008).
[CrossRef]

Bian, Y.

Y. Bian, Z. Zheng, X. Zhao, L. Liu, Y. Su, J. Liu, J. Zhu, and T. Zhou, Phys. Status Solidi 210, 1424 (2013).
[CrossRef]

Bozhevolnyi, S.

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 8, 13 (2013).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 4, 83 (2010).
[CrossRef]

Christy, R.

P. B. Johnson and R. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Dai, D.

Desiatov, B.

I. Goykhman, B. Desiatov, and U. Levy, Appl. Phys. Lett. 97, 141106 (2010).
[CrossRef]

Devaux, E.

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef]

Ebbesen, T.

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef]

Fan, S.

Gao, L.

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Goykhman, I.

I. Goykhman, B. Desiatov, and U. Levy, Appl. Phys. Lett. 97, 141106 (2010).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 8, 13 (2013).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 4, 83 (2010).
[CrossRef]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, J. Appl. Phys. 104, 034311 (2008).
[CrossRef]

Guo, R.

He, S.

Hu, F.

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999) pp. 387–389.

Johnson, P. B.

P. B. Johnson and R. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kobayashi, T.

Kuipers, L.

E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984) pp. 290–292.

Lanzillotti-Kimura, N. D.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, Nanophotonics 1, 1 (2012).

Levy, U.

I. Goykhman, B. Desiatov, and U. Levy, Appl. Phys. Lett. 97, 141106 (2010).
[CrossRef]

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984) pp. 290–292.

Liu, J.

Y. Bian, Z. Zheng, X. Zhao, L. Liu, Y. Su, J. Liu, J. Zhu, and T. Zhou, Phys. Status Solidi 210, 1424 (2013).
[CrossRef]

Liu, L.

Y. Bian, Z. Zheng, X. Zhao, L. Liu, Y. Su, J. Liu, J. Zhu, and T. Zhou, Phys. Status Solidi 210, 1424 (2013).
[CrossRef]

Ma, R. M.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, Nanophotonics 1, 1 (2012).

Morimoto, A.

Oulton, R. F.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, Nat. Commun. 2, 331 (2011).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, New J. Phys. 10, 105018 (2008).
[CrossRef]

Pile, D. F. P.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, New J. Phys. 10, 105018 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Polman, A.

E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef]

Sorger, V. J.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, Nanophotonics 1, 1 (2012).

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, Nat. Commun. 2, 331 (2011).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Spasenovic, M.

E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef]

Stockman, M.

M. Stockman, Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef]

Stockman, M. I.

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, J. Appl. Phys. 104, 034311 (2008).
[CrossRef]

Su, Y.

Y. Bian, Z. Zheng, X. Zhao, L. Liu, Y. Su, J. Liu, J. Zhu, and T. Zhou, Phys. Status Solidi 210, 1424 (2013).
[CrossRef]

Takahara, J.

Taki, H.

Tamir, T.

T. Tamir, Topics in Applied Physics (Springer-Verlag, 1979) pp. 62–66.

Tang, L.

Verhagen, E.

E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef]

Veronis, G.

Vogel, M. W.

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, J. Appl. Phys. 104, 034311 (2008).
[CrossRef]

Volkov, V.

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef]

Wang, X.

Wang, Y.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, Nat. Commun. 2, 331 (2011).
[CrossRef]

Yamagishi, S.

Ye, Z.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, Nat. Commun. 2, 331 (2011).
[CrossRef]

Yin, X.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, Nat. Commun. 2, 331 (2011).
[CrossRef]

Zhang, X.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, Nanophotonics 1, 1 (2012).

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, Nat. Commun. 2, 331 (2011).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, New J. Phys. 10, 105018 (2008).
[CrossRef]

Zhao, X.

Y. Bian, Z. Zheng, X. Zhao, L. Liu, Y. Su, J. Liu, J. Zhu, and T. Zhou, Phys. Status Solidi 210, 1424 (2013).
[CrossRef]

Zheng, Z.

Y. Bian, Z. Zheng, X. Zhao, L. Liu, Y. Su, J. Liu, J. Zhu, and T. Zhou, Phys. Status Solidi 210, 1424 (2013).
[CrossRef]

Zhou, T.

Y. Bian, Z. Zheng, X. Zhao, L. Liu, Y. Su, J. Liu, J. Zhu, and T. Zhou, Phys. Status Solidi 210, 1424 (2013).
[CrossRef]

Zhou, Z.

Zhu, J.

Y. Bian, Z. Zheng, X. Zhao, L. Liu, Y. Su, J. Liu, J. Zhu, and T. Zhou, Phys. Status Solidi 210, 1424 (2013).
[CrossRef]

Appl. Phys. Lett. (1)

I. Goykhman, B. Desiatov, and U. Levy, Appl. Phys. Lett. 97, 141106 (2010).
[CrossRef]

J. Appl. Phys. (1)

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, J. Appl. Phys. 104, 034311 (2008).
[CrossRef]

Nanophotonics (1)

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, Nanophotonics 1, 1 (2012).

Nat. Commun. (1)

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, Nat. Commun. 2, 331 (2011).
[CrossRef]

Nat. Photonics (3)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 4, 83 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 8, 13 (2013).
[CrossRef]

New J. Phys. (1)

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, New J. Phys. 10, 105018 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (1)

P. B. Johnson and R. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Phys. Rev. Lett. (3)

M. Stockman, Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef]

S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef]

E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef]

Phys. Status Solidi (1)

Y. Bian, Z. Zheng, X. Zhao, L. Liu, Y. Su, J. Liu, J. Zhu, and T. Zhou, Phys. Status Solidi 210, 1424 (2013).
[CrossRef]

Other (3)

T. Tamir, Topics in Applied Physics (Springer-Verlag, 1979) pp. 62–66.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984) pp. 290–292.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999) pp. 387–389.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) The strip and slot geometries. W is the width of slot or strip, H is the thickness of the semiconductor waveguide, G is the spacer thickness between the metal and slab waveguide, and t is the thickness of the metal. (b) effective index contrast, Δneff, between regions I and II versus H for t=50nm. The strip geometries use a silica spacer with G=10nm with an upper-half space for one of silica (symmetric) and the other of air (asymmetric). The two slot geometries are embedded in silica with G=25nm and G=50nm.

Fig. 2.
Fig. 2.

Variation of effective index (neff) with strip width [W) for the same geometries shown in Fig. 1(b)]. The break in the red dashed line, representing the asymmetric strip, is due to mode cutoff by coupling to the unbound TE mode of region I.

Fig. 3.
Fig. 3.

Hybridization of photonic and plasmonic modes in the strip (a) and slot (b) structures, the underlying photonic and plasmonic modes outlined in the text are shown along with the resulting hybrid mode.

Fig. 4.
Fig. 4.

(a) Parameterized plot of propagation length versus mode area. Here H=160nm and t=50nm for both slot and strip structures. Meanwhile, G=10nm for strip and 50 nm for slot. The widths of slot and strip were varied between W=103000nm. (b)–(e) Field distributions for a 20 nm-wide strip, 20 nm-wide slot, 2 μm-wide strip and 2 μm-wide slot, respectively.

Fig. 5.
Fig. 5.

Enhancement factor for the strip and slot waveguides as a function of width, W, while propagating along a 30° taper starting at 3 μm wide and terminating at 20 nm wide. Inset shows eikonal parameter for 30° taper at various widths for the chosen slot and strip.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Am=U(r)dAMax{2UE(r)},
δ=1k0|dR(β(z))1dz|.
f(z)=Am2(z0)vg(z0)Am2(z)vg(z)exp{2k0z0zI[β(s)]ds},

Metrics