Abstract

Conventional surface plasmons (SPs) or Bloch surface waves (BSWs) have a wave vector exceeding that of light in vacuum, and, therefore, the surface plasmon-coupled emission (SPCE) or Bloch surface wave-coupled emission (BSWCE) cannot escape from the corresponding structures. With the aid of a high-refractive-index prism or an oil-immersion objective, the SPCE or BSWCE can be coupled into free space. But the large volumes of the prism and objective are certainly unfavorable for miniaturization of the optical systems or inconvenient for applications such as the optical displays. Here we experimentally demonstrate a new method to extract the SPCE or BSWCE with a subsurface dielectric grating. The experimental results verify that the chip-like substrate with two decorated sides can bring out the directional fluorescence emission in free space. The emitting direction and emitting patterns can be tuned by the period size and dimensionality of the gratings. Our work provides a new strategy to realize free-space directional fluorescence emission at a very low cost and compact configuration, which has potential applications in fluorescence-based sensing, imaging, light-emitting diodes, optical displays, and other near-field optical devices.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
  2. J. R. Lakowicz, Anal. Biochem. 324, 153 (2004).
    [CrossRef]
  3. J. R. Lakowicz, Anal. Biochem. 337, 171 (2005).
    [CrossRef]
  4. Y. Fu and J. R. Lakowicz, Laser Photon. Rev. 3, 221 (2009).
    [CrossRef]
  5. Y. Fu, J. Zhang, and J. R. Lakowicz, J. Am. Chem. Soc. 132, 5540 (2010).
    [CrossRef]
  6. D. Gerard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, Phys. Rev. B 77, 045413 (2008).
    [CrossRef]
  7. H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, Nano Lett. 11, 637 (2011).
    [CrossRef]
  8. G. H. Rui, W. B. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. W. Zhan, Opt. Express 20, 19297 (2012).
    [CrossRef]
  9. M. F. Yi, D. G. Zhang, X. L. Wen, Q. Fu, P. Wang, Y. H. Lu, and H. Ming, Plasmonics 6, 213 (2011).
    [CrossRef]
  10. D. G. Zhang, R. Badugu, Y. K. Chen, S. S. Yu, P. J. Yao, P. Wang, H. Ming, and J. R. Lakowicz, Nanotechnology 25, 145202 (2014).
    [CrossRef]
  11. M. Liscidini, M. Galli, M. Shi, G. Dacarro, M. Patrini, D. Bajoni, and J. E. Sipe, Opt. Lett. 34, 2318 (2009).
    [CrossRef]
  12. M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, Appl. Phys. Lett. 99, 043302 (2011).
    [CrossRef]
  13. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1986).
  14. D. G. Zhang, Q. Fu, M. F. Yi, X. X. Wang, Y. K. Chen, Y. H. Lu, P. J. Yao, P. Wang, and H. Ming, Plasmonics 7, 309 (2012).
    [CrossRef]
  15. Y. K. Chen, D. G. Zhang, X. X. Wang, C. Liu, P. Wang, and H. Ming, Nanotechnology 23, 475202 (2012).
    [CrossRef]
  16. C. J. Regan, R. Rodriguez, S. C. Gourshetty, L. G. de Peralta, and A. A. Bernussi, Opt. Express 20, 20827 (2012).
    [CrossRef]
  17. D. G. Zhang, X. C. Yuan, and A. Bouhelier, Appl. Opt. 49, 875 (2010).
    [CrossRef]
  18. K. Endo and C. Adachi, Appl. Phys. Lett. 104, 121102 (2014).
    [CrossRef]
  19. R. L. Boada, C. J. Regan, D. Dominguez, A. A. Bernussi, and L. Grave de Peralta, Opt. Express 21, 11928 (2013).
    [CrossRef]
  20. C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, J. Appl. Phys. 113, 183105 (2013).
    [CrossRef]

2014

D. G. Zhang, R. Badugu, Y. K. Chen, S. S. Yu, P. J. Yao, P. Wang, H. Ming, and J. R. Lakowicz, Nanotechnology 25, 145202 (2014).
[CrossRef]

K. Endo and C. Adachi, Appl. Phys. Lett. 104, 121102 (2014).
[CrossRef]

2013

C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, J. Appl. Phys. 113, 183105 (2013).
[CrossRef]

R. L. Boada, C. J. Regan, D. Dominguez, A. A. Bernussi, and L. Grave de Peralta, Opt. Express 21, 11928 (2013).
[CrossRef]

2012

G. H. Rui, W. B. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. W. Zhan, Opt. Express 20, 19297 (2012).
[CrossRef]

C. J. Regan, R. Rodriguez, S. C. Gourshetty, L. G. de Peralta, and A. A. Bernussi, Opt. Express 20, 20827 (2012).
[CrossRef]

D. G. Zhang, Q. Fu, M. F. Yi, X. X. Wang, Y. K. Chen, Y. H. Lu, P. J. Yao, P. Wang, and H. Ming, Plasmonics 7, 309 (2012).
[CrossRef]

Y. K. Chen, D. G. Zhang, X. X. Wang, C. Liu, P. Wang, and H. Ming, Nanotechnology 23, 475202 (2012).
[CrossRef]

2011

M. F. Yi, D. G. Zhang, X. L. Wen, Q. Fu, P. Wang, Y. H. Lu, and H. Ming, Plasmonics 6, 213 (2011).
[CrossRef]

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, Nano Lett. 11, 637 (2011).
[CrossRef]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, Appl. Phys. Lett. 99, 043302 (2011).
[CrossRef]

2010

Y. Fu, J. Zhang, and J. R. Lakowicz, J. Am. Chem. Soc. 132, 5540 (2010).
[CrossRef]

D. G. Zhang, X. C. Yuan, and A. Bouhelier, Appl. Opt. 49, 875 (2010).
[CrossRef]

2009

2008

D. Gerard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, Phys. Rev. B 77, 045413 (2008).
[CrossRef]

2005

J. R. Lakowicz, Anal. Biochem. 337, 171 (2005).
[CrossRef]

2004

J. R. Lakowicz, Anal. Biochem. 324, 153 (2004).
[CrossRef]

Abeysinghe, D. C.

Adachi, C.

K. Endo and C. Adachi, Appl. Phys. Lett. 104, 121102 (2014).
[CrossRef]

Aouani, H.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, Nano Lett. 11, 637 (2011).
[CrossRef]

Badugu, R.

D. G. Zhang, R. Badugu, Y. K. Chen, S. S. Yu, P. J. Yao, P. Wang, H. Ming, and J. R. Lakowicz, Nanotechnology 25, 145202 (2014).
[CrossRef]

Bajoni, D.

Ballarini, M.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, Appl. Phys. Lett. 99, 043302 (2011).
[CrossRef]

Bernussi, A. A.

Blair, S.

D. Gerard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, Phys. Rev. B 77, 045413 (2008).
[CrossRef]

Boada, R. L.

Bonod, N.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, Nano Lett. 11, 637 (2011).
[CrossRef]

D. Gerard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, Phys. Rev. B 77, 045413 (2008).
[CrossRef]

Bouhelier, A.

Chen, W. B.

Chen, Y. K.

D. G. Zhang, R. Badugu, Y. K. Chen, S. S. Yu, P. J. Yao, P. Wang, H. Ming, and J. R. Lakowicz, Nanotechnology 25, 145202 (2014).
[CrossRef]

D. G. Zhang, Q. Fu, M. F. Yi, X. X. Wang, Y. K. Chen, Y. H. Lu, P. J. Yao, P. Wang, and H. Ming, Plasmonics 7, 309 (2012).
[CrossRef]

Y. K. Chen, D. G. Zhang, X. X. Wang, C. Liu, P. Wang, and H. Ming, Nanotechnology 23, 475202 (2012).
[CrossRef]

Dacarro, G.

de Peralta, L. G.

Descrovi, E.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, Appl. Phys. Lett. 99, 043302 (2011).
[CrossRef]

Devaux, E.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, Nano Lett. 11, 637 (2011).
[CrossRef]

Digregorio, G.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, Appl. Phys. Lett. 99, 043302 (2011).
[CrossRef]

Dintinger, J.

D. Gerard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, Phys. Rev. B 77, 045413 (2008).
[CrossRef]

Dominguez, D.

C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, J. Appl. Phys. 113, 183105 (2013).
[CrossRef]

R. L. Boada, C. J. Regan, D. Dominguez, A. A. Bernussi, and L. Grave de Peralta, Opt. Express 21, 11928 (2013).
[CrossRef]

Ebbesen, T. W.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, Nano Lett. 11, 637 (2011).
[CrossRef]

D. Gerard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, Phys. Rev. B 77, 045413 (2008).
[CrossRef]

Endo, K.

K. Endo and C. Adachi, Appl. Phys. Lett. 104, 121102 (2014).
[CrossRef]

Frascella, F.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, Appl. Phys. Lett. 99, 043302 (2011).
[CrossRef]

Fu, Q.

D. G. Zhang, Q. Fu, M. F. Yi, X. X. Wang, Y. K. Chen, Y. H. Lu, P. J. Yao, P. Wang, and H. Ming, Plasmonics 7, 309 (2012).
[CrossRef]

M. F. Yi, D. G. Zhang, X. L. Wen, Q. Fu, P. Wang, Y. H. Lu, and H. Ming, Plasmonics 6, 213 (2011).
[CrossRef]

Fu, Y.

Y. Fu, J. Zhang, and J. R. Lakowicz, J. Am. Chem. Soc. 132, 5540 (2010).
[CrossRef]

Y. Fu and J. R. Lakowicz, Laser Photon. Rev. 3, 221 (2009).
[CrossRef]

Galli, M.

Gerard, D.

D. Gerard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, Phys. Rev. B 77, 045413 (2008).
[CrossRef]

Giorgis, F.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, Appl. Phys. Lett. 99, 043302 (2011).
[CrossRef]

Gourshetty, S. C.

Grave de Peralta, L.

C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, J. Appl. Phys. 113, 183105 (2013).
[CrossRef]

R. L. Boada, C. J. Regan, D. Dominguez, A. A. Bernussi, and L. Grave de Peralta, Opt. Express 21, 11928 (2013).
[CrossRef]

Lakowicz, J. R.

D. G. Zhang, R. Badugu, Y. K. Chen, S. S. Yu, P. J. Yao, P. Wang, H. Ming, and J. R. Lakowicz, Nanotechnology 25, 145202 (2014).
[CrossRef]

Y. Fu, J. Zhang, and J. R. Lakowicz, J. Am. Chem. Soc. 132, 5540 (2010).
[CrossRef]

Y. Fu and J. R. Lakowicz, Laser Photon. Rev. 3, 221 (2009).
[CrossRef]

J. R. Lakowicz, Anal. Biochem. 337, 171 (2005).
[CrossRef]

J. R. Lakowicz, Anal. Biochem. 324, 153 (2004).
[CrossRef]

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).

Liscidini, M.

Liu, C.

Y. K. Chen, D. G. Zhang, X. X. Wang, C. Liu, P. Wang, and H. Ming, Nanotechnology 23, 475202 (2012).
[CrossRef]

Lu, Y. H.

D. G. Zhang, Q. Fu, M. F. Yi, X. X. Wang, Y. K. Chen, Y. H. Lu, P. J. Yao, P. Wang, and H. Ming, Plasmonics 7, 309 (2012).
[CrossRef]

M. F. Yi, D. G. Zhang, X. L. Wen, Q. Fu, P. Wang, Y. H. Lu, and H. Ming, Plasmonics 6, 213 (2011).
[CrossRef]

Mahboub, O.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, Nano Lett. 11, 637 (2011).
[CrossRef]

Mahdavi, F.

D. Gerard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, Phys. Rev. B 77, 045413 (2008).
[CrossRef]

Michelotti, F.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, Appl. Phys. Lett. 99, 043302 (2011).
[CrossRef]

Ming, H.

D. G. Zhang, R. Badugu, Y. K. Chen, S. S. Yu, P. J. Yao, P. Wang, H. Ming, and J. R. Lakowicz, Nanotechnology 25, 145202 (2014).
[CrossRef]

D. G. Zhang, Q. Fu, M. F. Yi, X. X. Wang, Y. K. Chen, Y. H. Lu, P. J. Yao, P. Wang, and H. Ming, Plasmonics 7, 309 (2012).
[CrossRef]

Y. K. Chen, D. G. Zhang, X. X. Wang, C. Liu, P. Wang, and H. Ming, Nanotechnology 23, 475202 (2012).
[CrossRef]

M. F. Yi, D. G. Zhang, X. L. Wen, Q. Fu, P. Wang, Y. H. Lu, and H. Ming, Plasmonics 6, 213 (2011).
[CrossRef]

Musi, V.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, Appl. Phys. Lett. 99, 043302 (2011).
[CrossRef]

Nelson, R. L.

Paeder, V.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, Appl. Phys. Lett. 99, 043302 (2011).
[CrossRef]

Patrini, M.

Popov, E.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, Nano Lett. 11, 637 (2011).
[CrossRef]

D. Gerard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, Phys. Rev. B 77, 045413 (2008).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1986).

Regan, C. J.

Rigneault, H.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, Nano Lett. 11, 637 (2011).
[CrossRef]

D. Gerard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, Phys. Rev. B 77, 045413 (2008).
[CrossRef]

Rivolo, P.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, Appl. Phys. Lett. 99, 043302 (2011).
[CrossRef]

Rodriguez, R.

Rui, G. H.

Shi, M.

Sipe, J. E.

Wang, P.

D. G. Zhang, R. Badugu, Y. K. Chen, S. S. Yu, P. J. Yao, P. Wang, H. Ming, and J. R. Lakowicz, Nanotechnology 25, 145202 (2014).
[CrossRef]

D. G. Zhang, Q. Fu, M. F. Yi, X. X. Wang, Y. K. Chen, Y. H. Lu, P. J. Yao, P. Wang, and H. Ming, Plasmonics 7, 309 (2012).
[CrossRef]

Y. K. Chen, D. G. Zhang, X. X. Wang, C. Liu, P. Wang, and H. Ming, Nanotechnology 23, 475202 (2012).
[CrossRef]

M. F. Yi, D. G. Zhang, X. L. Wen, Q. Fu, P. Wang, Y. H. Lu, and H. Ming, Plasmonics 6, 213 (2011).
[CrossRef]

Wang, X. X.

Y. K. Chen, D. G. Zhang, X. X. Wang, C. Liu, P. Wang, and H. Ming, Nanotechnology 23, 475202 (2012).
[CrossRef]

D. G. Zhang, Q. Fu, M. F. Yi, X. X. Wang, Y. K. Chen, Y. H. Lu, P. J. Yao, P. Wang, and H. Ming, Plasmonics 7, 309 (2012).
[CrossRef]

Wen, X. L.

M. F. Yi, D. G. Zhang, X. L. Wen, Q. Fu, P. Wang, Y. H. Lu, and H. Ming, Plasmonics 6, 213 (2011).
[CrossRef]

Wenger, J.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, Nano Lett. 11, 637 (2011).
[CrossRef]

D. Gerard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, Phys. Rev. B 77, 045413 (2008).
[CrossRef]

Yao, P. J.

D. G. Zhang, R. Badugu, Y. K. Chen, S. S. Yu, P. J. Yao, P. Wang, H. Ming, and J. R. Lakowicz, Nanotechnology 25, 145202 (2014).
[CrossRef]

D. G. Zhang, Q. Fu, M. F. Yi, X. X. Wang, Y. K. Chen, Y. H. Lu, P. J. Yao, P. Wang, and H. Ming, Plasmonics 7, 309 (2012).
[CrossRef]

Yi, M. F.

D. G. Zhang, Q. Fu, M. F. Yi, X. X. Wang, Y. K. Chen, Y. H. Lu, P. J. Yao, P. Wang, and H. Ming, Plasmonics 7, 309 (2012).
[CrossRef]

M. F. Yi, D. G. Zhang, X. L. Wen, Q. Fu, P. Wang, Y. H. Lu, and H. Ming, Plasmonics 6, 213 (2011).
[CrossRef]

Yu, S. S.

D. G. Zhang, R. Badugu, Y. K. Chen, S. S. Yu, P. J. Yao, P. Wang, H. Ming, and J. R. Lakowicz, Nanotechnology 25, 145202 (2014).
[CrossRef]

Yuan, X. C.

Zhan, Q. W.

Zhang, D. G.

D. G. Zhang, R. Badugu, Y. K. Chen, S. S. Yu, P. J. Yao, P. Wang, H. Ming, and J. R. Lakowicz, Nanotechnology 25, 145202 (2014).
[CrossRef]

D. G. Zhang, Q. Fu, M. F. Yi, X. X. Wang, Y. K. Chen, Y. H. Lu, P. J. Yao, P. Wang, and H. Ming, Plasmonics 7, 309 (2012).
[CrossRef]

Y. K. Chen, D. G. Zhang, X. X. Wang, C. Liu, P. Wang, and H. Ming, Nanotechnology 23, 475202 (2012).
[CrossRef]

M. F. Yi, D. G. Zhang, X. L. Wen, Q. Fu, P. Wang, Y. H. Lu, and H. Ming, Plasmonics 6, 213 (2011).
[CrossRef]

D. G. Zhang, X. C. Yuan, and A. Bouhelier, Appl. Opt. 49, 875 (2010).
[CrossRef]

Zhang, J.

Y. Fu, J. Zhang, and J. R. Lakowicz, J. Am. Chem. Soc. 132, 5540 (2010).
[CrossRef]

Anal. Biochem.

J. R. Lakowicz, Anal. Biochem. 324, 153 (2004).
[CrossRef]

J. R. Lakowicz, Anal. Biochem. 337, 171 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, Appl. Phys. Lett. 99, 043302 (2011).
[CrossRef]

K. Endo and C. Adachi, Appl. Phys. Lett. 104, 121102 (2014).
[CrossRef]

J. Am. Chem. Soc.

Y. Fu, J. Zhang, and J. R. Lakowicz, J. Am. Chem. Soc. 132, 5540 (2010).
[CrossRef]

J. Appl. Phys.

C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, J. Appl. Phys. 113, 183105 (2013).
[CrossRef]

Laser Photon. Rev.

Y. Fu and J. R. Lakowicz, Laser Photon. Rev. 3, 221 (2009).
[CrossRef]

Nano Lett.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, Nano Lett. 11, 637 (2011).
[CrossRef]

Nanotechnology

Y. K. Chen, D. G. Zhang, X. X. Wang, C. Liu, P. Wang, and H. Ming, Nanotechnology 23, 475202 (2012).
[CrossRef]

D. G. Zhang, R. Badugu, Y. K. Chen, S. S. Yu, P. J. Yao, P. Wang, H. Ming, and J. R. Lakowicz, Nanotechnology 25, 145202 (2014).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

D. Gerard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, Phys. Rev. B 77, 045413 (2008).
[CrossRef]

Plasmonics

D. G. Zhang, Q. Fu, M. F. Yi, X. X. Wang, Y. K. Chen, Y. H. Lu, P. J. Yao, P. Wang, and H. Ming, Plasmonics 7, 309 (2012).
[CrossRef]

M. F. Yi, D. G. Zhang, X. L. Wen, Q. Fu, P. Wang, Y. H. Lu, and H. Ming, Plasmonics 6, 213 (2011).
[CrossRef]

Other

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic configuration of the substrate with two decorated sides. RhB molecules are doped in the PMMA film. (b) AFM image of the inscribed one-dimensional (1D) grating and the cross-section profile along the white line. The grating direction is along x axis. The period of the grating is 505 nm.

Fig. 2.
Fig. 2.

(a) Schematic graph of the wave vectors modulated by the 1D grating. K0 is the wavenumber of the fluorescence in vacuum. Kx and Ky are the x- and y-components of the emitting wave vector (K). The ring R0 represents the wave vector of the SPCE, while R1 (K=Ksp+G) and R1 (K=Ksp+G) are the fluorescence Bloch waves generated by the grating. The small ring in the center (blue-dashed circle) represents the N.A. of the objective (0.7). (b)–(e) BFP images of the fluorescence at different wavelengths (560, 600, 630, and 640 nm). P1 represents the selected points on the fluorescence arcs. The red elliptical rings in (c)–(e) show the cross areas of the bright arcs.

Fig. 3.
Fig. 3.

Change of radial angle (β) (for point P1 in Fig. 2) with respect to change of the gratings’ periods (414, 505, and 614 nm) and fluorescence wavelength (550–640 nm). Both experimental data estimated from the BFP images and calculation results from the equation are plotted.

Fig. 4.
Fig. 4.

BFP images of the coupled fluorescence from the 1DPC substrate with the grating on the subsurface of the glass. (a) Schematic of the 1DPC, which is used instead of Ag layer in Fig. 1(a). The fluorescence wavelengths are (b) 610 nm, (c) 620 nm, (d) 630 nm, and (e) 640 nm. The period of the 1D grating is 614 nm. The ring labeled with the white-dashed circle (b) represents the N.A. of the collection objective (0.70).

Fig. 5.
Fig. 5.

(a) AFM image of the inscribed two-dimensional (2D) grating. There is periodicity along x, y, u, and v directions. The white scale bar is 1 μm. (b) Corresponding BFP image of the fluorescence. The ring labeled with the white dashed circle represents the N.A. of the collection objective (0.70).

Metrics