Abstract

We present wideband resonant reflectors designed with gratings in which the grating ridges are matched to an identical material, thereby eliminating local reflections and phase changes. This critical interface thus possesses zero refractive-index contrast; hence “zero-contrast gratings.” We design reflectors with zero-contrast gratings and high-contrast gratings and compare the results. For simple gratings with two-part periods, we show that zero-contrast grating reflectors outperform comparable high-contrast grating reflectors. An example silicon-on-glass reflector exhibits a 99% reflectance bandwidth of 700nm for zero refractive-index contrast Δn=0, whereas a high-contrast device with Δn=2 yields a bandwidth of 600nm. It follows that local Fabry–Perot modes residing in the grating ridges and reflecting off a high-contrast interface are not the root cause of wideband reflection.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hessel and A. A. Oliner, Appl. Opt. 4, 1275 (1965).
    [CrossRef]
  2. P. Vincent and M. Neviere, Appl. Phys. 20, 345 (1979).
    [CrossRef]
  3. L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985).
  4. I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
    [CrossRef]
  5. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
    [CrossRef]
  6. S. S. Wang and R. Magnusson, Appl. Opt. 32, 2606 (1993).
    [CrossRef]
  7. S. Peng and G. M. Morris, Opt. Soc. 13, 993 (1996).
  8. Y. Ding and R. Magnusson, Opt. Express 12, 5661 (2004).
  9. K. J. Lee, J. Curzan, M. Shokooh-Saremi, and R. Magnusson, Appl. Phys. Lett. 98, 211112 (2011).
    [CrossRef]
  10. S. Tibuleac and R. Magnusson, Opt. Lett. 26, 584 (2001).
    [CrossRef]
  11. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
    [CrossRef]
  12. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676 (2004).
    [CrossRef]
  13. C. J. Chang-Hasnain and W. Yang, Adv. Opt. Photon. 4, 379 (2012).
  14. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tischenko, E. Popov, and L. Mashev, Opt. Quantum Electron. 18, 123 (1986).
    [CrossRef]
  15. D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
    [CrossRef]
  16. S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, IEEE Photon. Technol. Lett. 18, 835 (2006).
    [CrossRef]
  17. P. Viktorovitch, C. Sciancalepore, T. Benyattou, B. B. Bakir, and X. Letartre, Proc. SPIE 8270, 827003 (2012).
  18. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).
  19. R. Eberhart and J. Kennedy, in Proceedings of IEEE International Conference on Neural Networks (Institute of Electrical and Electronics Engineers, 1995), pp. 1942–1948.
  20. M. Shokooh-Saremi and R. Magnusson, Opt. Lett. 32, 894 (2007).
    [CrossRef]
  21. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1077 (1995).
    [CrossRef]
  22. R. Magnusson and M. Shokooh-Saremi, Opt. Express 16, 3456 (2008).
    [CrossRef]
  23. R. Magnusson, Opt. Lett. 37, 3792 (2012).
    [CrossRef]

2012 (3)

C. J. Chang-Hasnain and W. Yang, Adv. Opt. Photon. 4, 379 (2012).

P. Viktorovitch, C. Sciancalepore, T. Benyattou, B. B. Bakir, and X. Letartre, Proc. SPIE 8270, 827003 (2012).

R. Magnusson, Opt. Lett. 37, 3792 (2012).
[CrossRef]

2011 (1)

K. J. Lee, J. Curzan, M. Shokooh-Saremi, and R. Magnusson, Appl. Phys. Lett. 98, 211112 (2011).
[CrossRef]

2008 (1)

2007 (1)

2006 (1)

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, IEEE Photon. Technol. Lett. 18, 835 (2006).
[CrossRef]

2004 (3)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676 (2004).
[CrossRef]

Y. Ding and R. Magnusson, Opt. Express 12, 5661 (2004).

2001 (1)

1997 (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

1996 (1)

S. Peng and G. M. Morris, Opt. Soc. 13, 993 (1996).

1995 (1)

1993 (1)

1989 (1)

I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
[CrossRef]

1986 (1)

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tischenko, E. Popov, and L. Mashev, Opt. Quantum Electron. 18, 123 (1986).
[CrossRef]

1985 (2)

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
[CrossRef]

L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985).

1979 (1)

P. Vincent and M. Neviere, Appl. Phys. 20, 345 (1979).
[CrossRef]

1965 (1)

Avrutsky, I. A.

I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
[CrossRef]

Bakir, B. B.

P. Viktorovitch, C. Sciancalepore, T. Benyattou, B. B. Bakir, and X. Letartre, Proc. SPIE 8270, 827003 (2012).

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, IEEE Photon. Technol. Lett. 18, 835 (2006).
[CrossRef]

Benyattou, T.

P. Viktorovitch, C. Sciancalepore, T. Benyattou, B. B. Bakir, and X. Letartre, Proc. SPIE 8270, 827003 (2012).

Boutami, S.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, IEEE Photon. Technol. Lett. 18, 835 (2006).
[CrossRef]

Chang-Hasnain, C. J.

C. J. Chang-Hasnain and W. Yang, Adv. Opt. Photon. 4, 379 (2012).

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
[CrossRef]

Chen, L.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676 (2004).
[CrossRef]

Curzan, J.

K. J. Lee, J. Curzan, M. Shokooh-Saremi, and R. Magnusson, Appl. Phys. Lett. 98, 211112 (2011).
[CrossRef]

Deng, Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
[CrossRef]

Ding, Y.

Eberhart, R.

R. Eberhart and J. Kennedy, in Proceedings of IEEE International Conference on Neural Networks (Institute of Electrical and Electronics Engineers, 1995), pp. 1942–1948.

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

Garrigues, M.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, IEEE Photon. Technol. Lett. 18, 835 (2006).
[CrossRef]

Gaylord, T. K.

Golubenko, G. A.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tischenko, E. Popov, and L. Mashev, Opt. Quantum Electron. 18, 123 (1986).
[CrossRef]

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
[CrossRef]

Grann, E. B.

Hattori, H.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, IEEE Photon. Technol. Lett. 18, 835 (2006).
[CrossRef]

Hessel, A.

Huang, M. C. Y.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

Kennedy, J.

R. Eberhart and J. Kennedy, in Proceedings of IEEE International Conference on Neural Networks (Institute of Electrical and Electronics Engineers, 1995), pp. 1942–1948.

Leclercq, J.-L.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, IEEE Photon. Technol. Lett. 18, 835 (2006).
[CrossRef]

Lee, K. J.

K. J. Lee, J. Curzan, M. Shokooh-Saremi, and R. Magnusson, Appl. Phys. Lett. 98, 211112 (2011).
[CrossRef]

Letartre, X.

P. Viktorovitch, C. Sciancalepore, T. Benyattou, B. B. Bakir, and X. Letartre, Proc. SPIE 8270, 827003 (2012).

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, IEEE Photon. Technol. Lett. 18, 835 (2006).
[CrossRef]

Magnusson, R.

Mashev, L.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tischenko, E. Popov, and L. Mashev, Opt. Quantum Electron. 18, 123 (1986).
[CrossRef]

L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985).

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

Moharam, M. G.

Morris, G. M.

S. Peng and G. M. Morris, Opt. Soc. 13, 993 (1996).

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
[CrossRef]

Neviere, M.

P. Vincent and M. Neviere, Appl. Phys. 20, 345 (1979).
[CrossRef]

Oliner, A. A.

Peng, S.

S. Peng and G. M. Morris, Opt. Soc. 13, 993 (1996).

Pommet, D. A.

Popov, E.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tischenko, E. Popov, and L. Mashev, Opt. Quantum Electron. 18, 123 (1986).
[CrossRef]

L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985).

Rojo-Romeo, P.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, IEEE Photon. Technol. Lett. 18, 835 (2006).
[CrossRef]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

Sciancalepore, C.

P. Viktorovitch, C. Sciancalepore, T. Benyattou, B. B. Bakir, and X. Letartre, Proc. SPIE 8270, 827003 (2012).

Seassal, C.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, IEEE Photon. Technol. Lett. 18, 835 (2006).
[CrossRef]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

Shokooh-Saremi, M.

Suzuki, Y.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676 (2004).
[CrossRef]

Svakhin, A. S.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tischenko, E. Popov, and L. Mashev, Opt. Quantum Electron. 18, 123 (1986).
[CrossRef]

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
[CrossRef]

Sychugov, V. A.

I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
[CrossRef]

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tischenko, E. Popov, and L. Mashev, Opt. Quantum Electron. 18, 123 (1986).
[CrossRef]

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
[CrossRef]

Tibuleac, S.

Tischenko, A. V.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tischenko, E. Popov, and L. Mashev, Opt. Quantum Electron. 18, 123 (1986).
[CrossRef]

Tishchenko, A. V.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
[CrossRef]

Viktorovitch, P.

P. Viktorovitch, C. Sciancalepore, T. Benyattou, B. B. Bakir, and X. Letartre, Proc. SPIE 8270, 827003 (2012).

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, IEEE Photon. Technol. Lett. 18, 835 (2006).
[CrossRef]

Vincent, P.

P. Vincent and M. Neviere, Appl. Phys. 20, 345 (1979).
[CrossRef]

Wang, S. S.

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

Yang, W.

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Appl. Phys. (1)

P. Vincent and M. Neviere, Appl. Phys. 20, 345 (1979).
[CrossRef]

Appl. Phys. Lett. (1)

K. J. Lee, J. Curzan, M. Shokooh-Saremi, and R. Magnusson, Appl. Phys. Lett. 98, 211112 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, IEEE Photon. Technol. Lett. 18, 835 (2006).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676 (2004).
[CrossRef]

J. Mod. Opt. (1)

I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985).

Opt. Express (2)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tischenko, E. Popov, and L. Mashev, Opt. Quantum Electron. 18, 123 (1986).
[CrossRef]

Opt. Soc. (1)

S. Peng and G. M. Morris, Opt. Soc. 13, 993 (1996).

Proc. SPIE (1)

P. Viktorovitch, C. Sciancalepore, T. Benyattou, B. B. Bakir, and X. Letartre, Proc. SPIE 8270, 827003 (2012).

Sov. J. Quantum Electron. (1)

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
[CrossRef]

Other (2)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

R. Eberhart and J. Kennedy, in Proceedings of IEEE International Conference on Neural Networks (Institute of Electrical and Electronics Engineers, 1995), pp. 1942–1948.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic model of GMR devices. (a) Zero-contrast resonant grating structure. (b) High-contrast resonant grating structure. For the examples provided, the devices are made of a partially etched or a fully etched silicon layer with n=3.48 on a glass substrate with ns=1.48. The cover index is nc=1 for operation in air. I represents the input plane wave with unit amplitude, R denotes reflectance, and T transmittance.

Fig. 2.
Fig. 2.

Calculated spectral response of the zero-contrast GMR reflector in Fig. 1(a). Parameters: dg=470nm, dh=255nm, Λ=827nm, and F=0.643.

Fig. 3.
Fig. 3.

Internal magnetic field distribution associated with the zero-contrast reflector. (a) λ=1.55μm. (b) λ=1.95μm. The scale bar is calibrated relative to unit-amplitude input excitation.

Fig. 4.
Fig. 4.

Calculated spectral response of the high-contrast GMR reflector in Fig. 1(b). Parameters: dg=493nm, Λ=786nm, and F=0.707. The inset displays the internal magnetic field distribution associated with the device at λ=1.55μm.

Fig. 5.
Fig. 5.

Calculated spectral response of a zero-contrast membrane GMR reflector with AR coating. Parameters: dg=490nm, dh=255nm, dAR=235nm, nAR=1.865, Λ=827nm, and F=0.643.

Fig. 6.
Fig. 6.

Calculated R0>0.9999 spectra. Parameters: (ZCG) dg=451nm, dh=623nm, Λ=656nm, and F=0.557; (HCG) dg=490nm, Λ=780nm, and F=0.721.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

FF={1Mi=1M[Rdesired(λi)Rdesign(λi)]2}1/2,

Metrics