Abstract

We propose a phase-sensitive optical time-domain reflectometry (Φ-OTDR) scheme with counterpumping fiber Brillouin amplification (FBA). High-sensitivity perturbation detection over 100 km is experimentally demonstrated as an example. FBA significantly enhances the probe pulse signal, especially at the second half of the sensing fiber, with only 6.4 dBm pump power. It is confirmed that its amplification efficiency is much higher than 28.0 dBm counterpumping fiber Raman amplification. The FBA Φ-OTDR scheme demonstrated in this work can also be incorporated into other distributed fiber-optic sensing systems for extension of sensing distance or enhancement of sensing signal level.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Wu, Z. N. Wang, F. Peng, Z. P. Peng, X. Y. Li, Y. Wu, and Y. J. Rao, “Field test of a fully distributed fiber-optic intrusion detection system for long-distance security monitoring of national borderline,” presented at the 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2014.
  2. L. Thévenaz, in Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2006), paper ThC1.
  3. Y. L. Lu, T. Zhu, L. A. Chen, and X. Y. Bao, J. Lightwave Technol. 28, 3243 (2010).
  4. F. Peng, Z. Wang, Y. Rao, and X. Jia, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2013), paper JW2 A.22.
  5. J. Bromage, J. Lightwave Technol. 22, 79 (2004).
    [CrossRef]
  6. Y. J. Rao, J. Luo, Z. L. Ran, J. F. Yue, X. D. Luo, and Z. Zhou, Proc. SPIE 75031O, 1 (2009).
  7. F. Peng, Z. P. Peng, X. H. Jia, Y. J. Rao, Z. N. Wang, and H. Wu, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2014), paper M3 J.4.
  8. C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier, 2005).
  9. O. Terra, G. Grosche, and H. Schnatz, Opt. Express 18, 16102 (2010).
    [CrossRef]
  10. K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, Science 336, 441 (2012).
    [CrossRef]
  11. A. Kobyakov, S. Darmanyan, M. Sauer, and D. Chowdhury, Opt. Lett. 31, 1960 (2006).
    [CrossRef]
  12. G. P. Agrawal, Nonlinear Fiber Optics (Springer, 2000).
  13. H. F. Martins, S. Martín-López, P. Corredera, M. L. Filograno, O. Frazão, and M. Gonzalez-Herráez, J. Lightwave Technol. 32, 1510 (2014).
    [CrossRef]
  14. L. Chen and X. Bao, Opt. Commun. 152, 65 (1998).
    [CrossRef]
  15. Z. N. Wang, H. Wu, M. Q. Fan, Y. J. Rao, X. H. Jia, and W. L. Zhang, Opt. Express 21, 20090 (2013).
    [CrossRef]
  16. D. Williams, X. Bao, and L. Chen, Photon. Res. 2, 1 (2014).
    [CrossRef]
  17. Z. Qin, L. Chen, and X. Bao, IEEE Photon. Technol. Lett. 24, 542 (2012).
    [CrossRef]

2014 (2)

2013 (1)

2012 (2)

Z. Qin, L. Chen, and X. Bao, IEEE Photon. Technol. Lett. 24, 542 (2012).
[CrossRef]

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, Science 336, 441 (2012).
[CrossRef]

2010 (2)

2009 (1)

Y. J. Rao, J. Luo, Z. L. Ran, J. F. Yue, X. D. Luo, and Z. Zhou, Proc. SPIE 75031O, 1 (2009).

2006 (1)

2004 (1)

1998 (1)

L. Chen and X. Bao, Opt. Commun. 152, 65 (1998).
[CrossRef]

Agrawal, G. P.

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier, 2005).

G. P. Agrawal, Nonlinear Fiber Optics (Springer, 2000).

Alnis, J.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, Science 336, 441 (2012).
[CrossRef]

Bao, X.

D. Williams, X. Bao, and L. Chen, Photon. Res. 2, 1 (2014).
[CrossRef]

Z. Qin, L. Chen, and X. Bao, IEEE Photon. Technol. Lett. 24, 542 (2012).
[CrossRef]

L. Chen and X. Bao, Opt. Commun. 152, 65 (1998).
[CrossRef]

Bao, X. Y.

Bromage, J.

Chen, L.

D. Williams, X. Bao, and L. Chen, Photon. Res. 2, 1 (2014).
[CrossRef]

Z. Qin, L. Chen, and X. Bao, IEEE Photon. Technol. Lett. 24, 542 (2012).
[CrossRef]

L. Chen and X. Bao, Opt. Commun. 152, 65 (1998).
[CrossRef]

Chen, L. A.

Chowdhury, D.

Corredera, P.

Darmanyan, S.

Droste, S.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, Science 336, 441 (2012).
[CrossRef]

Fan, M. Q.

Filograno, M. L.

Frazão, O.

Gonzalez-Herráez, M.

Grosche, G.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, Science 336, 441 (2012).
[CrossRef]

O. Terra, G. Grosche, and H. Schnatz, Opt. Express 18, 16102 (2010).
[CrossRef]

Hänsch, T. W.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, Science 336, 441 (2012).
[CrossRef]

Headley, C.

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier, 2005).

Holzwarth, R.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, Science 336, 441 (2012).
[CrossRef]

Jia, X.

F. Peng, Z. Wang, Y. Rao, and X. Jia, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2013), paper JW2 A.22.

Jia, X. H.

Z. N. Wang, H. Wu, M. Q. Fan, Y. J. Rao, X. H. Jia, and W. L. Zhang, Opt. Express 21, 20090 (2013).
[CrossRef]

F. Peng, Z. P. Peng, X. H. Jia, Y. J. Rao, Z. N. Wang, and H. Wu, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2014), paper M3 J.4.

Kobyakov, A.

Legero, T.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, Science 336, 441 (2012).
[CrossRef]

Li, X. Y.

H. J. Wu, Z. N. Wang, F. Peng, Z. P. Peng, X. Y. Li, Y. Wu, and Y. J. Rao, “Field test of a fully distributed fiber-optic intrusion detection system for long-distance security monitoring of national borderline,” presented at the 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2014.

Lu, Y. L.

Luo, J.

Y. J. Rao, J. Luo, Z. L. Ran, J. F. Yue, X. D. Luo, and Z. Zhou, Proc. SPIE 75031O, 1 (2009).

Luo, X. D.

Y. J. Rao, J. Luo, Z. L. Ran, J. F. Yue, X. D. Luo, and Z. Zhou, Proc. SPIE 75031O, 1 (2009).

Martín-López, S.

Martins, H. F.

Peng, F.

F. Peng, Z. P. Peng, X. H. Jia, Y. J. Rao, Z. N. Wang, and H. Wu, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2014), paper M3 J.4.

F. Peng, Z. Wang, Y. Rao, and X. Jia, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2013), paper JW2 A.22.

H. J. Wu, Z. N. Wang, F. Peng, Z. P. Peng, X. Y. Li, Y. Wu, and Y. J. Rao, “Field test of a fully distributed fiber-optic intrusion detection system for long-distance security monitoring of national borderline,” presented at the 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2014.

Peng, Z. P.

H. J. Wu, Z. N. Wang, F. Peng, Z. P. Peng, X. Y. Li, Y. Wu, and Y. J. Rao, “Field test of a fully distributed fiber-optic intrusion detection system for long-distance security monitoring of national borderline,” presented at the 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2014.

F. Peng, Z. P. Peng, X. H. Jia, Y. J. Rao, Z. N. Wang, and H. Wu, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2014), paper M3 J.4.

Predehl, K.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, Science 336, 441 (2012).
[CrossRef]

Qin, Z.

Z. Qin, L. Chen, and X. Bao, IEEE Photon. Technol. Lett. 24, 542 (2012).
[CrossRef]

Ran, Z. L.

Y. J. Rao, J. Luo, Z. L. Ran, J. F. Yue, X. D. Luo, and Z. Zhou, Proc. SPIE 75031O, 1 (2009).

Rao, Y.

F. Peng, Z. Wang, Y. Rao, and X. Jia, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2013), paper JW2 A.22.

Rao, Y. J.

Z. N. Wang, H. Wu, M. Q. Fan, Y. J. Rao, X. H. Jia, and W. L. Zhang, Opt. Express 21, 20090 (2013).
[CrossRef]

Y. J. Rao, J. Luo, Z. L. Ran, J. F. Yue, X. D. Luo, and Z. Zhou, Proc. SPIE 75031O, 1 (2009).

H. J. Wu, Z. N. Wang, F. Peng, Z. P. Peng, X. Y. Li, Y. Wu, and Y. J. Rao, “Field test of a fully distributed fiber-optic intrusion detection system for long-distance security monitoring of national borderline,” presented at the 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2014.

F. Peng, Z. P. Peng, X. H. Jia, Y. J. Rao, Z. N. Wang, and H. Wu, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2014), paper M3 J.4.

Raupach, S. M. F.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, Science 336, 441 (2012).
[CrossRef]

Sauer, M.

Schnatz, H.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, Science 336, 441 (2012).
[CrossRef]

O. Terra, G. Grosche, and H. Schnatz, Opt. Express 18, 16102 (2010).
[CrossRef]

Terra, O.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, Science 336, 441 (2012).
[CrossRef]

O. Terra, G. Grosche, and H. Schnatz, Opt. Express 18, 16102 (2010).
[CrossRef]

Thévenaz, L.

L. Thévenaz, in Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2006), paper ThC1.

Udem, T.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, Science 336, 441 (2012).
[CrossRef]

Wang, Z.

F. Peng, Z. Wang, Y. Rao, and X. Jia, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2013), paper JW2 A.22.

Wang, Z. N.

Z. N. Wang, H. Wu, M. Q. Fan, Y. J. Rao, X. H. Jia, and W. L. Zhang, Opt. Express 21, 20090 (2013).
[CrossRef]

H. J. Wu, Z. N. Wang, F. Peng, Z. P. Peng, X. Y. Li, Y. Wu, and Y. J. Rao, “Field test of a fully distributed fiber-optic intrusion detection system for long-distance security monitoring of national borderline,” presented at the 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2014.

F. Peng, Z. P. Peng, X. H. Jia, Y. J. Rao, Z. N. Wang, and H. Wu, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2014), paper M3 J.4.

Williams, D.

Wu, H.

Z. N. Wang, H. Wu, M. Q. Fan, Y. J. Rao, X. H. Jia, and W. L. Zhang, Opt. Express 21, 20090 (2013).
[CrossRef]

F. Peng, Z. P. Peng, X. H. Jia, Y. J. Rao, Z. N. Wang, and H. Wu, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2014), paper M3 J.4.

Wu, H. J.

H. J. Wu, Z. N. Wang, F. Peng, Z. P. Peng, X. Y. Li, Y. Wu, and Y. J. Rao, “Field test of a fully distributed fiber-optic intrusion detection system for long-distance security monitoring of national borderline,” presented at the 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2014.

Wu, Y.

H. J. Wu, Z. N. Wang, F. Peng, Z. P. Peng, X. Y. Li, Y. Wu, and Y. J. Rao, “Field test of a fully distributed fiber-optic intrusion detection system for long-distance security monitoring of national borderline,” presented at the 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2014.

Yue, J. F.

Y. J. Rao, J. Luo, Z. L. Ran, J. F. Yue, X. D. Luo, and Z. Zhou, Proc. SPIE 75031O, 1 (2009).

Zhang, W. L.

Zhou, Z.

Y. J. Rao, J. Luo, Z. L. Ran, J. F. Yue, X. D. Luo, and Z. Zhou, Proc. SPIE 75031O, 1 (2009).

Zhu, T.

IEEE Photon. Technol. Lett. (1)

Z. Qin, L. Chen, and X. Bao, IEEE Photon. Technol. Lett. 24, 542 (2012).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Commun. (1)

L. Chen and X. Bao, Opt. Commun. 152, 65 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Photon. Res. (1)

Proc. SPIE (1)

Y. J. Rao, J. Luo, Z. L. Ran, J. F. Yue, X. D. Luo, and Z. Zhou, Proc. SPIE 75031O, 1 (2009).

Science (1)

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, Science 336, 441 (2012).
[CrossRef]

Other (6)

G. P. Agrawal, Nonlinear Fiber Optics (Springer, 2000).

F. Peng, Z. P. Peng, X. H. Jia, Y. J. Rao, Z. N. Wang, and H. Wu, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2014), paper M3 J.4.

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier, 2005).

F. Peng, Z. Wang, Y. Rao, and X. Jia, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2013), paper JW2 A.22.

H. J. Wu, Z. N. Wang, F. Peng, Z. P. Peng, X. Y. Li, Y. Wu, and Y. J. Rao, “Field test of a fully distributed fiber-optic intrusion detection system for long-distance security monitoring of national borderline,” presented at the 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2014.

L. Thévenaz, in Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2006), paper ThC1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Simulated Rayleigh scattering traces with Brillouin amplification/Raman amplification.

Fig. 2.
Fig. 2.

Simulated Rayleigh scattering traces with different pump conditions. (The Brillouin gain variation is related to the pump–probe frequency offset with regard to the BFS; all other parameters are the same as those in Fig. 1.)

Fig. 3.
Fig. 3.

Experimental setup for Φ-OTDR with FBA. Arrangement A and B represent two schemes to amplify the probe pulse in different fiber coils by setting proper frequency shift. Arrangement A: FBA occurs in Section 1. Arrangement B: FBA occurs in Section 2.

Fig. 4.
Fig. 4.

(a) Φ-OTDR trace without amplification. (b) Brillouin amplified trace with 6.4 dBm pump power. (c) Raman amplified trace with 25.2 dBm pump power. (d) Raman amplified trace with 28.0 dBm pump power.

Fig. 5.
Fig. 5.

Φ-OTDR trace with FBA applied to 50–75 km of the whole sensing range (Arrangement B is used).

Fig. 6.
Fig. 6.

Φ-OTDR traces: (a) FBA pump–probe frequency shift set to 11.020 GHz versus 28.0 dBm Raman pumping. (b) FBA pump–probe frequency shift set to 11.055 GHz versus Raman pumping.

Fig. 7.
Fig. 7.

Demodulated intrusion signal at different locations: (a) detected perturbation at 50.0 km and (b) detected perturbation at 98.8 km.

Tables (2)

Tables Icon

Table 1. Parameters Used in the Brillouin Amplification Model

Tables Icon

Table 2. Parameters Used in the Raman Amplification Model

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dIpdz=gBIpIsαIp,
dIsdz=gBIpIs+αIs,

Metrics