Abstract

A novel high temperature sensor based on customized multicore fiber (MCF) is proposed and experimentally demonstrated. The sensor consists of a short, few-centimeter-long segment of MCF spliced between two standard single-mode fibers. Due to interference effects, the transmission spectrum through this fiber chain features sharp and deep notches. Exposing the MCF segment to increasing temperatures of up to 1000°C results in a shift of the transmission notches toward longer wavelengths with a slope of approximately 29pm/°C at lower temperatures and 52pm/°C at higher temperatures, enabling temperature measurements with high sensitivity and accuracy. Due to its compact size and mechanical rigidity, the MCF sensor can be subjected to harsh environments. The fabrication of the MCF sensor is straightforward and reproducible, making it an inexpensive fiber device.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. T. S. Yu, P. B. Ruffin, and S. Yin, Fiber Optic Sensors (CRC Press, 2008).
  2. E. Milcent, G. Olalde, J. F. Robert, D. Hernandez, and M. Clement, Appl. Opt. 33, 5882 (1994).
    [CrossRef]
  3. S. H. Nam and S. Yin, IEEE Photon. Technol. Lett. 17, 11 (2005).
  4. E. Li, X. Wang, and C. Zhang, Appl. Phys. Lett. 89, 9 (2006).
  5. D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, IEEE Photon. Technol. Lett. 18, 511 (2006).
    [CrossRef]
  6. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, Opt. Lett. 33, 21 (2008).
  7. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, Opt. Express 17, 21551 (2009).
    [CrossRef]
  8. S. M. Nalawade and H. V. Thakur, IEEE Photon. Technol. Lett. 23, 1600 (2011).
    [CrossRef]
  9. B. Park, J. Provine, W. Jung, R. T. Howe, and O. S. Solgaard, IEEE Sens. J. 11, 11 (2011).
    [CrossRef]
  10. J. Ma, J. Ju, L. Jin, W. Jin, and D. Wang, Opt. Express 19, 13 (2011).
  11. Y. Liu, S. Qu, and Y. Li, Opt. Lett. 38, 3 (2013).
  12. G. Statkiewicz-Barabach, J. P. Carvalho, O. Frazao, J. Olszewski, P. Mergo, J. L. Santos, and W. Urbanczyk, Appl. Opt. 50, 3742 (2011).
    [CrossRef]
  13. S. Li-Yang, T. Wang, J. Canning, K. Cook, and T. Hwa-Yaw, Appl. Opt. 51, B30 (2012).
    [CrossRef]
  14. P. Rugeland and W. Margulis, Appl. Opt. 51, 6227 (2012).
    [CrossRef]
  15. Y. Mohanna, J. M. Saugrain, J. C. Rousseau, and P. Ledox, J. Lightwave Technol. 8, 1799 (1990).
    [CrossRef]

2013 (1)

Y. Liu, S. Qu, and Y. Li, Opt. Lett. 38, 3 (2013).

2012 (2)

2011 (4)

G. Statkiewicz-Barabach, J. P. Carvalho, O. Frazao, J. Olszewski, P. Mergo, J. L. Santos, and W. Urbanczyk, Appl. Opt. 50, 3742 (2011).
[CrossRef]

S. M. Nalawade and H. V. Thakur, IEEE Photon. Technol. Lett. 23, 1600 (2011).
[CrossRef]

B. Park, J. Provine, W. Jung, R. T. Howe, and O. S. Solgaard, IEEE Sens. J. 11, 11 (2011).
[CrossRef]

J. Ma, J. Ju, L. Jin, W. Jin, and D. Wang, Opt. Express 19, 13 (2011).

2009 (1)

2008 (1)

H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, Opt. Lett. 33, 21 (2008).

2006 (2)

E. Li, X. Wang, and C. Zhang, Appl. Phys. Lett. 89, 9 (2006).

D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, IEEE Photon. Technol. Lett. 18, 511 (2006).
[CrossRef]

2005 (1)

S. H. Nam and S. Yin, IEEE Photon. Technol. Lett. 17, 11 (2005).

1994 (1)

1990 (1)

Y. Mohanna, J. M. Saugrain, J. C. Rousseau, and P. Ledox, J. Lightwave Technol. 8, 1799 (1990).
[CrossRef]

Canning, J.

Carvalho, J. P.

Choi, E. S.

H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, Opt. Lett. 33, 21 (2008).

Choi, H. Y.

H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, Opt. Lett. 33, 21 (2008).

Clement, M.

Cook, K.

Coviello, G.

Finazzi, V.

Frazao, O.

Hernandez, D.

Howe, R. T.

B. Park, J. Provine, W. Jung, R. T. Howe, and O. S. Solgaard, IEEE Sens. J. 11, 11 (2011).
[CrossRef]

Hwa-Yaw, T.

Jin, L.

J. Ma, J. Ju, L. Jin, W. Jin, and D. Wang, Opt. Express 19, 13 (2011).

Jin, W.

J. Ma, J. Ju, L. Jin, W. Jin, and D. Wang, Opt. Express 19, 13 (2011).

Ju, J.

J. Ma, J. Ju, L. Jin, W. Jin, and D. Wang, Opt. Express 19, 13 (2011).

Jung, W.

B. Park, J. Provine, W. Jung, R. T. Howe, and O. S. Solgaard, IEEE Sens. J. 11, 11 (2011).
[CrossRef]

Ledox, P.

Y. Mohanna, J. M. Saugrain, J. C. Rousseau, and P. Ledox, J. Lightwave Technol. 8, 1799 (1990).
[CrossRef]

Lee, B. H.

H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, Opt. Lett. 33, 21 (2008).

Li, E.

E. Li, X. Wang, and C. Zhang, Appl. Phys. Lett. 89, 9 (2006).

Li, Y.

Y. Liu, S. Qu, and Y. Li, Opt. Lett. 38, 3 (2013).

Liu, Y.

Y. Liu, S. Qu, and Y. Li, Opt. Lett. 38, 3 (2013).

Li-Yang, S.

Ma, J.

J. Ma, J. Ju, L. Jin, W. Jin, and D. Wang, Opt. Express 19, 13 (2011).

Margulis, W.

Mergo, P.

Milcent, E.

Minkovich, V. P.

D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, IEEE Photon. Technol. Lett. 18, 511 (2006).
[CrossRef]

Mohanna, Y.

Y. Mohanna, J. M. Saugrain, J. C. Rousseau, and P. Ledox, J. Lightwave Technol. 8, 1799 (1990).
[CrossRef]

Monzon-Hernandez, D.

D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, IEEE Photon. Technol. Lett. 18, 511 (2006).
[CrossRef]

Nalawade, S. M.

S. M. Nalawade and H. V. Thakur, IEEE Photon. Technol. Lett. 23, 1600 (2011).
[CrossRef]

Nam, S. H.

S. H. Nam and S. Yin, IEEE Photon. Technol. Lett. 17, 11 (2005).

Olalde, G.

Olszewski, J.

Paek, U. C.

H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, Opt. Lett. 33, 21 (2008).

Park, B.

B. Park, J. Provine, W. Jung, R. T. Howe, and O. S. Solgaard, IEEE Sens. J. 11, 11 (2011).
[CrossRef]

Park, K. S.

H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, Opt. Lett. 33, 21 (2008).

Park, S. J.

H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, Opt. Lett. 33, 21 (2008).

Provine, J.

B. Park, J. Provine, W. Jung, R. T. Howe, and O. S. Solgaard, IEEE Sens. J. 11, 11 (2011).
[CrossRef]

Pruneri, V.

Qu, S.

Y. Liu, S. Qu, and Y. Li, Opt. Lett. 38, 3 (2013).

Robert, J. F.

Rousseau, J. C.

Y. Mohanna, J. M. Saugrain, J. C. Rousseau, and P. Ledox, J. Lightwave Technol. 8, 1799 (1990).
[CrossRef]

Ruffin, P. B.

F. T. S. Yu, P. B. Ruffin, and S. Yin, Fiber Optic Sensors (CRC Press, 2008).

Rugeland, P.

Santos, J. L.

Saugrain, J. M.

Y. Mohanna, J. M. Saugrain, J. C. Rousseau, and P. Ledox, J. Lightwave Technol. 8, 1799 (1990).
[CrossRef]

Solgaard, O. S.

B. Park, J. Provine, W. Jung, R. T. Howe, and O. S. Solgaard, IEEE Sens. J. 11, 11 (2011).
[CrossRef]

Statkiewicz-Barabach, G.

Thakur, H. V.

S. M. Nalawade and H. V. Thakur, IEEE Photon. Technol. Lett. 23, 1600 (2011).
[CrossRef]

Urbanczyk, W.

Villatoro, J.

G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, Opt. Express 17, 21551 (2009).
[CrossRef]

D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, IEEE Photon. Technol. Lett. 18, 511 (2006).
[CrossRef]

Wang, D.

J. Ma, J. Ju, L. Jin, W. Jin, and D. Wang, Opt. Express 19, 13 (2011).

Wang, T.

Wang, X.

E. Li, X. Wang, and C. Zhang, Appl. Phys. Lett. 89, 9 (2006).

Yin, S.

S. H. Nam and S. Yin, IEEE Photon. Technol. Lett. 17, 11 (2005).

F. T. S. Yu, P. B. Ruffin, and S. Yin, Fiber Optic Sensors (CRC Press, 2008).

Yu, F. T. S.

F. T. S. Yu, P. B. Ruffin, and S. Yin, Fiber Optic Sensors (CRC Press, 2008).

Zhang, C.

E. Li, X. Wang, and C. Zhang, Appl. Phys. Lett. 89, 9 (2006).

Appl. Opt. (4)

Appl. Phys. Lett. (1)

E. Li, X. Wang, and C. Zhang, Appl. Phys. Lett. 89, 9 (2006).

IEEE Photon. Technol. Lett. (3)

D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, IEEE Photon. Technol. Lett. 18, 511 (2006).
[CrossRef]

S. H. Nam and S. Yin, IEEE Photon. Technol. Lett. 17, 11 (2005).

S. M. Nalawade and H. V. Thakur, IEEE Photon. Technol. Lett. 23, 1600 (2011).
[CrossRef]

IEEE Sens. J. (1)

B. Park, J. Provine, W. Jung, R. T. Howe, and O. S. Solgaard, IEEE Sens. J. 11, 11 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Y. Mohanna, J. M. Saugrain, J. C. Rousseau, and P. Ledox, J. Lightwave Technol. 8, 1799 (1990).
[CrossRef]

Opt. Express (2)

G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, Opt. Express 17, 21551 (2009).
[CrossRef]

J. Ma, J. Ju, L. Jin, W. Jin, and D. Wang, Opt. Express 19, 13 (2011).

Opt. Lett. (2)

Y. Liu, S. Qu, and Y. Li, Opt. Lett. 38, 3 (2013).

H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, Opt. Lett. 33, 21 (2008).

Other (1)

F. T. S. Yu, P. B. Ruffin, and S. Yin, Fiber Optic Sensors (CRC Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Cross-section image of the MCF. (b) and (c) Light distributions at different positions along the seven-core fiber axis. (d) Schematic diagram of the interferometric fiber sensor.

Fig. 2.
Fig. 2.

Measured interference pattern for the proposed device for different MCF lengths.

Fig. 3.
Fig. 3.

Superimposed spectral response of a sensor with 2 cm of 7-core fiber as a function of temperature.

Fig. 4.
Fig. 4.

Maximum attenuation peak of the wavelength versus temperature variation for the heating and cooling cycle.

Fig. 5.
Fig. 5.

Time evolution of the wavelength shift of the MCF sensor (red dots) during a long cycle of temperature variations (blue line).

Metrics