Abstract

We have experimentally analyzed the dynamics of polarized strong optical injection in 1550 nm vertical-cavity surface-emitting lasers (VCSELs). The locking ranges of optical injection-locked (OIL) VCSELs are experimentally measured in different states of polarized strong optical injection. Based on our novel ellipse model, the influence of the polarization state of strong injection light is quantitatively studied for the first time.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Koyama, J. Lightwave Technol. 24, 4502 (2006).
    [CrossRef]
  2. W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, Y. Liu, and M. C. Amann, Electron. Lett. 42, 976 (2006).
    [CrossRef]
  3. E. K. Lau, L. J. Wong, and M. C. Wu, IEEE J. Sel. Top. Quantum Electron. 15, 618 (2009).
    [CrossRef]
  4. E. K. Lau, H. Sung, and M. C. Wu, IEEE J. Quantum Electron. 44, 90 (2008).
    [CrossRef]
  5. E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, Opt. Express 16, 6609 (2008).
    [CrossRef]
  6. P. Guo, C. Zhang, J. Li, W. Yang, D. Parekh, C. J. Chang-Hasnain, W. Hu, A. Xu, and Z. Chen, Chin. Opt. Lett. 10, 091407 (2012).
    [CrossRef]
  7. P. Guo, T. Sun, W. Yang, D. Parekh, C. Zhang, X. Xie, C. J. Chang-Hasnain, A. Xu, and Z. Chen, Opt. Express 21, 22114 (2013).
    [CrossRef]
  8. P. Guo, C. Zhang, A. Xu, and Z. Chen, Opt. Express 21, 7276 (2013).
    [CrossRef]
  9. A. Hurtado, D. Labukhin, I. D. Henning, and M. J. Adams, IEEE J. Sel. Top. Quantum Electron. 15, 585 (2009).
    [CrossRef]
  10. R. Al-Seyab, K. Schires, N. A. Khan, A. Hurtado, I. D. Henning, and M. J. Adams, IEEE J. Sel. Top. Quantum Electron. 17, 1242 (2011).
    [CrossRef]
  11. R. Al-Seyab, K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, IEEE J. Sel. Top. Quantum Electron. 19, 1700512 (2013).
    [CrossRef]
  12. X. Zhao and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 20, 395 (2008).
    [CrossRef]
  13. W. Yang, P. Guo, D. Parekh, and C. J. Chang-Hasnain, Opt. Express 18, 20887 (2010).
    [CrossRef]
  14. P. Guo, W. Yang, D. Parekh, A. Xu, Z. Chen, and C. J. Chang-Hasnain, Opt. Express 20, 6980 (2012).
    [CrossRef]
  15. A. Quirce, A. Valle, and L. Pesquera, IEEE Photon. Technol. Lett. 21, 1193 (2009).
    [CrossRef]
  16. P. Guo, W. Yang, D. Parekh, C. J. Chang-Hasnain, A. Xu, and Z. Chen, Opt. Express 21, 3125 (2013).
    [CrossRef]

2013

2012

2011

R. Al-Seyab, K. Schires, N. A. Khan, A. Hurtado, I. D. Henning, and M. J. Adams, IEEE J. Sel. Top. Quantum Electron. 17, 1242 (2011).
[CrossRef]

2010

2009

A. Quirce, A. Valle, and L. Pesquera, IEEE Photon. Technol. Lett. 21, 1193 (2009).
[CrossRef]

A. Hurtado, D. Labukhin, I. D. Henning, and M. J. Adams, IEEE J. Sel. Top. Quantum Electron. 15, 585 (2009).
[CrossRef]

E. K. Lau, L. J. Wong, and M. C. Wu, IEEE J. Sel. Top. Quantum Electron. 15, 618 (2009).
[CrossRef]

2008

E. K. Lau, H. Sung, and M. C. Wu, IEEE J. Quantum Electron. 44, 90 (2008).
[CrossRef]

E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, Opt. Express 16, 6609 (2008).
[CrossRef]

X. Zhao and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 20, 395 (2008).
[CrossRef]

2006

F. Koyama, J. Lightwave Technol. 24, 4502 (2006).
[CrossRef]

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, Y. Liu, and M. C. Amann, Electron. Lett. 42, 976 (2006).
[CrossRef]

Adams, M. J.

R. Al-Seyab, K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, IEEE J. Sel. Top. Quantum Electron. 19, 1700512 (2013).
[CrossRef]

R. Al-Seyab, K. Schires, N. A. Khan, A. Hurtado, I. D. Henning, and M. J. Adams, IEEE J. Sel. Top. Quantum Electron. 17, 1242 (2011).
[CrossRef]

A. Hurtado, D. Labukhin, I. D. Henning, and M. J. Adams, IEEE J. Sel. Top. Quantum Electron. 15, 585 (2009).
[CrossRef]

Al-Seyab, R.

R. Al-Seyab, K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, IEEE J. Sel. Top. Quantum Electron. 19, 1700512 (2013).
[CrossRef]

R. Al-Seyab, K. Schires, N. A. Khan, A. Hurtado, I. D. Henning, and M. J. Adams, IEEE J. Sel. Top. Quantum Electron. 17, 1242 (2011).
[CrossRef]

Amann, M. C.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, Y. Liu, and M. C. Amann, Electron. Lett. 42, 976 (2006).
[CrossRef]

Böhm, G.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, Y. Liu, and M. C. Amann, Electron. Lett. 42, 976 (2006).
[CrossRef]

Chang-Hasnain, C.

Chang-Hasnain, C. J.

Chen, Z.

Guo, P.

Henning, I. D.

R. Al-Seyab, K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, IEEE J. Sel. Top. Quantum Electron. 19, 1700512 (2013).
[CrossRef]

R. Al-Seyab, K. Schires, N. A. Khan, A. Hurtado, I. D. Henning, and M. J. Adams, IEEE J. Sel. Top. Quantum Electron. 17, 1242 (2011).
[CrossRef]

A. Hurtado, D. Labukhin, I. D. Henning, and M. J. Adams, IEEE J. Sel. Top. Quantum Electron. 15, 585 (2009).
[CrossRef]

Hofmann, W.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, Y. Liu, and M. C. Amann, Electron. Lett. 42, 976 (2006).
[CrossRef]

Hu, W.

Hurtado, A.

R. Al-Seyab, K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, IEEE J. Sel. Top. Quantum Electron. 19, 1700512 (2013).
[CrossRef]

R. Al-Seyab, K. Schires, N. A. Khan, A. Hurtado, I. D. Henning, and M. J. Adams, IEEE J. Sel. Top. Quantum Electron. 17, 1242 (2011).
[CrossRef]

A. Hurtado, D. Labukhin, I. D. Henning, and M. J. Adams, IEEE J. Sel. Top. Quantum Electron. 15, 585 (2009).
[CrossRef]

Khan, N. A.

R. Al-Seyab, K. Schires, N. A. Khan, A. Hurtado, I. D. Henning, and M. J. Adams, IEEE J. Sel. Top. Quantum Electron. 17, 1242 (2011).
[CrossRef]

Koyama, F.

Labukhin, D.

A. Hurtado, D. Labukhin, I. D. Henning, and M. J. Adams, IEEE J. Sel. Top. Quantum Electron. 15, 585 (2009).
[CrossRef]

Lau, E. K.

E. K. Lau, L. J. Wong, and M. C. Wu, IEEE J. Sel. Top. Quantum Electron. 15, 618 (2009).
[CrossRef]

E. K. Lau, H. Sung, and M. C. Wu, IEEE J. Quantum Electron. 44, 90 (2008).
[CrossRef]

E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, Opt. Express 16, 6609 (2008).
[CrossRef]

Li, J.

Liu, Y.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, Y. Liu, and M. C. Amann, Electron. Lett. 42, 976 (2006).
[CrossRef]

Ortsiefer, M.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, Y. Liu, and M. C. Amann, Electron. Lett. 42, 976 (2006).
[CrossRef]

Parekh, D.

Pesquera, L.

A. Quirce, A. Valle, and L. Pesquera, IEEE Photon. Technol. Lett. 21, 1193 (2009).
[CrossRef]

Quirce, A.

A. Quirce, A. Valle, and L. Pesquera, IEEE Photon. Technol. Lett. 21, 1193 (2009).
[CrossRef]

Schires, K.

R. Al-Seyab, K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, IEEE J. Sel. Top. Quantum Electron. 19, 1700512 (2013).
[CrossRef]

R. Al-Seyab, K. Schires, N. A. Khan, A. Hurtado, I. D. Henning, and M. J. Adams, IEEE J. Sel. Top. Quantum Electron. 17, 1242 (2011).
[CrossRef]

Sun, T.

Sung, H.

E. K. Lau, H. Sung, and M. C. Wu, IEEE J. Quantum Electron. 44, 90 (2008).
[CrossRef]

Sung, H. K.

Valle, A.

A. Quirce, A. Valle, and L. Pesquera, IEEE Photon. Technol. Lett. 21, 1193 (2009).
[CrossRef]

Wong, L. J.

E. K. Lau, L. J. Wong, and M. C. Wu, IEEE J. Sel. Top. Quantum Electron. 15, 618 (2009).
[CrossRef]

Wu, M. C.

E. K. Lau, L. J. Wong, and M. C. Wu, IEEE J. Sel. Top. Quantum Electron. 15, 618 (2009).
[CrossRef]

E. K. Lau, H. Sung, and M. C. Wu, IEEE J. Quantum Electron. 44, 90 (2008).
[CrossRef]

E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, Opt. Express 16, 6609 (2008).
[CrossRef]

Xie, X.

Xu, A.

Yang, W.

Zhang, C.

Zhao, X.

Zhu, N. H.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, Y. Liu, and M. C. Amann, Electron. Lett. 42, 976 (2006).
[CrossRef]

Chin. Opt. Lett.

Electron. Lett.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, Y. Liu, and M. C. Amann, Electron. Lett. 42, 976 (2006).
[CrossRef]

IEEE J. Quantum Electron.

E. K. Lau, H. Sung, and M. C. Wu, IEEE J. Quantum Electron. 44, 90 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

E. K. Lau, L. J. Wong, and M. C. Wu, IEEE J. Sel. Top. Quantum Electron. 15, 618 (2009).
[CrossRef]

A. Hurtado, D. Labukhin, I. D. Henning, and M. J. Adams, IEEE J. Sel. Top. Quantum Electron. 15, 585 (2009).
[CrossRef]

R. Al-Seyab, K. Schires, N. A. Khan, A. Hurtado, I. D. Henning, and M. J. Adams, IEEE J. Sel. Top. Quantum Electron. 17, 1242 (2011).
[CrossRef]

R. Al-Seyab, K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, IEEE J. Sel. Top. Quantum Electron. 19, 1700512 (2013).
[CrossRef]

IEEE Photon. Technol. Lett.

X. Zhao and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 20, 395 (2008).
[CrossRef]

A. Quirce, A. Valle, and L. Pesquera, IEEE Photon. Technol. Lett. 21, 1193 (2009).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of experimental setup for strong-OIL VCSEL (VCSEL, vertical-cavity surface-emitting laser; ML, master laser; PC, polarization controller; PMOC, polarization-maintaining optical circulator; OS, optical splitter; PD, photodiode; OSA, optical spectrum analyzer; NA, network analyzer).

Fig. 2.
Fig. 2.

(a) Optical spectrum of the 1550 nm VCSEL. The two modes (λ=1539.35nm, λ=1539.74nm, λλ=0.39nm) correspond to the two polarizations of the fundamental transverse mode of the VCSEL. (b) Frequency response curve under the FR condition. The resonance frequency is about 5.35 GHz.

Fig. 3.
Fig. 3.

Optical spectra of the strong-OIL VCSEL under the specific locking condition: Rinj=10.0dB, Δλ=0.01nm. Gray curve: FR condition. Red and black gradient curves: strong OIL in different polarization states of injection light.

Fig. 4.
Fig. 4.

Frequency response curves of the strong-OIL VCSEL under the specific locking condition: Rinj=10.0dB, Δλ=0.01nm. Gray curve: FR condition. Red and black gradient curves: strong OIL in different polarization states of injection light.

Fig. 5.
Fig. 5.

Intuitive vector figure to depict the polarization relationship between the injection light Einj and the slave VCSEL’s two polarization modes in different polarization states of injection light.

Fig. 6.
Fig. 6.

Locking ranges of an OIL VCSEL in different polarization states of injection light. The switching point is judged by a sudden change of the frequency response curve and the optical power.

Fig. 7.
Fig. 7.

Optical spectra observed in state 3 by red-sweeping the master laser’s wavelength. Red curves: locking onto the strong mode, λ. Blue curves: locking onto the weak mode, λ. Embedded figure: detailed version of the peaks of optical spectra.

Fig. 8.
Fig. 8.

Frequency response curves in state 3 from red-sweeping the master laser’s wavelength. Red curves: locking onto the strong mode, λ. Blue curve: locking onto the weak mode, λ.

Fig. 9.
Fig. 9.

Ellipse model for two polarization modes of a VCSEL: (a) ellipse model for state 2 and (b) ellipse model for state 3.

Fig. 10.
Fig. 10.

Relationship of the two normalized ellipses is fitted by the unit circle very well.

Metrics