Abstract

An all-fiber actively mode-locked thulium-doped fiber laser (AML-TDFL) based on a 10 GHz bandwidth electro-optic intensity modulator (EOM) providing flexible picosecond pulses at 1980 nm is presented. The EOM is driven by electrical pulses rather than traditional sine-wave signals. The repetition rate of output pulses was 21.4 MHz at fundamental mode-locking, which could be scaled up to 1.498 GHz through the 70th order harmonic mode-locking, and the shortest measured output pulse width was 38 ps. Furthermore, the output pulse width could be tuned by either adjusting the modulation frequency with small detuning or changing the width of these driving electrical pulses without frequency detuning. In our work, the stability of these mode-locked pulses obtained from the AML-TDFL was superior; for instance, the measured supermode suppression ratio of 1.498 GHz pulses train was up to 48 dB.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Pal, R. Sen, K. Bremer, S. Yao, E. Lewis, T. Sun, and K. T. V. Grattan, Appl. Opt. 51, 7011 (2012).
    [CrossRef]
  2. I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, Opt. Laser Technol. 44, 2095 (2012).
    [CrossRef]
  3. N. M. Fried and K. E. Murray, J. Endourol. 19, 25 (2005).
    [CrossRef]
  4. W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, Opt. Lett. 39, 1849 (2014).
    [CrossRef]
  5. L. M. Yang, P. Wan, V. Protopopov, and J. Liu, Opt. Express 20, 5683 (2012).
    [CrossRef]
  6. M. Zhang, E. Kelleher, T. Runcorn, V. Mashinsky, O. Medvedkov, E. Dianov, D. Popa, S. Milana, T. Hasan, and Z. Sun, Opt. Express 21, 23261 (2013).
    [CrossRef]
  7. J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, Opt. Lett. 37, 2085 (2012).
    [CrossRef]
  8. M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, Opt. Express 22, 7865 (2014).
    [CrossRef]
  9. J. Liu, Q. Wang, and P. Wang, Opt. Express 20, 22442 (2012).
    [CrossRef]
  10. J. Sotor, G. Sobon, K. Krzempek, and K. M. Abramski, Opt. Commun. 285, 3174 (2012).
    [CrossRef]
  11. A. Heidt, Z. Li, J. Sahu, P. Shardlow, M. Becker, M. Rothhardt, M. Ibsen, R. Phelan, B. Kelly, and S. Alam, Opt. Lett. 38, 1615 (2013).
    [CrossRef]
  12. A. Heidt, Z. Li, and D. Richardson, IEEE J. Sel. Top. Quantum Electron. 20, 3100612 (2014).
  13. D. J. Richardson, J. Nilsson, and W. A. Clarkson, J. Opt. Soc. Am. B 27, B63 (2010).
    [CrossRef]
  14. D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
    [CrossRef]
  15. H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
    [CrossRef]
  16. L. N. Binh and N. Q. Ngo, Ultra-Fast Fiber Lasers (CRC Press, 2010).
  17. P. Hübner, C. Kieleck, S. D. Jackson, and M. Eichhorn, Opt. Lett. 36, 2483 (2011).
    [CrossRef]
  18. X. Wang, P. Zhou, R. Tao, and L. Si, IEEE Photon. J. 5, 1502206 (2013).
    [CrossRef]
  19. J. Schlager, Y. Yamabayashi, D. Franzen, and R. Juneau, IEEE Photon. Technol. Lett. 1, 264 (1989).
    [CrossRef]
  20. M. Malmström, W. Margulis, O. Tarasenko, V. Pasiskevicius, and F. Laurell, Opt. Express 20, 2905 (2012).
    [CrossRef]
  21. W. Li, Z. Yin, J. Qiu, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 25, 2247 (2013).
    [CrossRef]
  22. Y. Li, C. Lou, M. Han, and Y. Gao, Opt. Quantum Electron. 33, 589 (2001).
    [CrossRef]
  23. Y. M. Chang, J. Lee, Y. M. Jhon, and J. H. Lee, Appl. Opt. 51, 5295 (2012).
    [CrossRef]
  24. J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, Opt. Express 22, 5387 (2014).
    [CrossRef]

2014

2013

2012

2011

2010

2005

N. M. Fried and K. E. Murray, J. Endourol. 19, 25 (2005).
[CrossRef]

2001

Y. Li, C. Lou, M. Han, and Y. Gao, Opt. Quantum Electron. 33, 589 (2001).
[CrossRef]

2000

H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
[CrossRef]

1989

J. Schlager, Y. Yamabayashi, D. Franzen, and R. Juneau, IEEE Photon. Technol. Lett. 1, 264 (1989).
[CrossRef]

1970

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
[CrossRef]

Abramski, K. M.

J. Sotor, G. Sobon, K. Krzempek, and K. M. Abramski, Opt. Commun. 285, 3174 (2012).
[CrossRef]

Alam, S.

Becker, M.

Binh, L. N.

L. N. Binh and N. Q. Ngo, Ultra-Fast Fiber Lasers (CRC Press, 2010).

Bremer, K.

Chang, Y. M.

Clarkson, W. A.

Dianov, E.

Eichhorn, M.

Franzen, D.

J. Schlager, Y. Yamabayashi, D. Franzen, and R. Juneau, IEEE Photon. Technol. Lett. 1, 264 (1989).
[CrossRef]

Fried, N. M.

N. M. Fried and K. E. Murray, J. Endourol. 19, 25 (2005).
[CrossRef]

Gao, W. L.

Gao, Y.

Y. Li, C. Lou, M. Han, and Y. Gao, Opt. Quantum Electron. 33, 589 (2001).
[CrossRef]

Grattan, K. T. V.

Han, M.

Y. Li, C. Lou, M. Han, and Y. Gao, Opt. Quantum Electron. 33, 589 (2001).
[CrossRef]

Hasan, T.

Haus, H. A.

H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
[CrossRef]

Heidt, A.

Hou, J.

Hübner, P.

Ibsen, M.

Jackson, S. D.

Jhon, Y. M.

Juneau, R.

J. Schlager, Y. Yamabayashi, D. Franzen, and R. Juneau, IEEE Photon. Technol. Lett. 1, 264 (1989).
[CrossRef]

Jung, M.

Kadwani, P.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, Opt. Laser Technol. 44, 2095 (2012).
[CrossRef]

Kelleher, E.

Kelly, B.

Kieleck, C.

Koo, J.

Krzempek, K.

J. Sotor, G. Sobon, K. Krzempek, and K. M. Abramski, Opt. Commun. 285, 3174 (2012).
[CrossRef]

Kuizenga, D. J.

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
[CrossRef]

Laurell, F.

Lee, J.

Lee, J. H.

Lee, K.

Lee, S.

Lewis, E.

Li, J.

Li, W.

W. Li, Z. Yin, J. Qiu, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 25, 2247 (2013).
[CrossRef]

Li, Y.

Y. Li, C. Lou, M. Han, and Y. Gao, Opt. Quantum Electron. 33, 589 (2001).
[CrossRef]

Li, Z.

Lin, J.

W. Li, Z. Yin, J. Qiu, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 25, 2247 (2013).
[CrossRef]

Liu, J.

Liu, Y.

Lou, C.

Y. Li, C. Lou, M. Han, and Y. Gao, Opt. Quantum Electron. 33, 589 (2001).
[CrossRef]

Luo, H.

Lv, P.

Ma, J.

Malmström, M.

Margulis, W.

Mashinsky, V.

Medvedkov, O.

Milana, S.

Mingareev, I.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, Opt. Laser Technol. 44, 2095 (2012).
[CrossRef]

Murray, K. E.

N. M. Fried and K. E. Murray, J. Endourol. 19, 25 (2005).
[CrossRef]

Ngo, N. Q.

L. N. Binh and N. Q. Ngo, Ultra-Fast Fiber Lasers (CRC Press, 2010).

Nilsson, J.

Olowinsky, A.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, Opt. Laser Technol. 44, 2095 (2012).
[CrossRef]

Pal, A.

Park, J.

Pasiskevicius, V.

Phelan, R.

Popa, D.

Protopopov, V.

Qian, L. J.

Qiu, J.

W. Li, Z. Yin, J. Qiu, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 25, 2247 (2013).
[CrossRef]

Richardson, D.

A. Heidt, Z. Li, and D. Richardson, IEEE J. Sel. Top. Quantum Electron. 20, 3100612 (2014).

Richardson, D. J.

Richardson, M.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, Opt. Laser Technol. 44, 2095 (2012).
[CrossRef]

Rothhardt, M.

Runcorn, T.

Sahu, J.

Schlager, J.

J. Schlager, Y. Yamabayashi, D. Franzen, and R. Juneau, IEEE Photon. Technol. Lett. 1, 264 (1989).
[CrossRef]

Sen, R.

Shah, L.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, Opt. Laser Technol. 44, 2095 (2012).
[CrossRef]

Shardlow, P.

Si, L.

X. Wang, P. Zhou, R. Tao, and L. Si, IEEE Photon. J. 5, 1502206 (2013).
[CrossRef]

Siegman, A. E.

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
[CrossRef]

Sobon, G.

J. Sotor, G. Sobon, K. Krzempek, and K. M. Abramski, Opt. Commun. 285, 3174 (2012).
[CrossRef]

Song, Y.-W.

Sotor, J.

J. Sotor, G. Sobon, K. Krzempek, and K. M. Abramski, Opt. Commun. 285, 3174 (2012).
[CrossRef]

Sun, T.

Sun, Z.

Tang, D. Y.

Tao, R.

X. Wang, P. Zhou, R. Tao, and L. Si, IEEE Photon. J. 5, 1502206 (2013).
[CrossRef]

Tarasenko, O.

Wan, P.

Wang, J. Y.

Wang, P.

Wang, Q.

Wang, X.

X. Wang, P. Zhou, R. Tao, and L. Si, IEEE Photon. J. 5, 1502206 (2013).
[CrossRef]

Weirauch, F.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, Opt. Laser Technol. 44, 2095 (2012).
[CrossRef]

Wu, J.

W. Li, Z. Yin, J. Qiu, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 25, 2247 (2013).
[CrossRef]

Xie, G. Q.

Xue, G.

Yamabayashi, Y.

J. Schlager, Y. Yamabayashi, D. Franzen, and R. Juneau, IEEE Photon. Technol. Lett. 1, 264 (1989).
[CrossRef]

Yan, Z.

Yang, L. M.

Yang, W.

Yao, S.

Yin, K.

Yin, Z.

W. Li, Z. Yin, J. Qiu, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 25, 2247 (2013).
[CrossRef]

Yu, H. H.

Yuan, P.

Zhang, B.

Zhang, H. J.

Zhang, L.

Zhang, M.

Zhou, K.

Zhou, P.

X. Wang, P. Zhou, R. Tao, and L. Si, IEEE Photon. J. 5, 1502206 (2013).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
[CrossRef]

A. Heidt, Z. Li, and D. Richardson, IEEE J. Sel. Top. Quantum Electron. 20, 3100612 (2014).

IEEE Photon. J.

X. Wang, P. Zhou, R. Tao, and L. Si, IEEE Photon. J. 5, 1502206 (2013).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Schlager, Y. Yamabayashi, D. Franzen, and R. Juneau, IEEE Photon. Technol. Lett. 1, 264 (1989).
[CrossRef]

W. Li, Z. Yin, J. Qiu, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 25, 2247 (2013).
[CrossRef]

J. Endourol.

N. M. Fried and K. E. Murray, J. Endourol. 19, 25 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

J. Sotor, G. Sobon, K. Krzempek, and K. M. Abramski, Opt. Commun. 285, 3174 (2012).
[CrossRef]

Opt. Express

Opt. Laser Technol.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, Opt. Laser Technol. 44, 2095 (2012).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

Y. Li, C. Lou, M. Han, and Y. Gao, Opt. Quantum Electron. 33, 589 (2001).
[CrossRef]

Other

L. N. Binh and N. Q. Ngo, Ultra-Fast Fiber Lasers (CRC Press, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup of the AML-TDFL. TDF, thulium-doped fiber; WDM, wavelength division multiplexer; HR-FBG, high-reflectivity fiber Bragg grating; EOM, electro-optic intensity modulator; PC, polarization controller; OC, optical coupler; RF amplifier, radio frequency amplifier.

Fig. 2.
Fig. 2.

Output characteristics of actively fundamental mode-locked pulses. (a) Optical spectrum. (b) Pulse train at 21.4 MHz. (c) RF spectrum, RBW=1kHz. (d) Autocorrelation trace measured at amplified average power of 60mW.

Fig. 3.
Fig. 3.

Tunability of the fundamentally mode-locked pulse width. (a) Autocorrelation traces with FWHM level of 58, 75, 86, and 92 ps at the detuning of 0, 0.5, 1.1, and 1.8 kHz, respectively. (b) Typical pulse shapes with increasing electrical pulse widths measured by the InGaAs photodector monitored on the sampling oscilloscope.

Fig. 4.
Fig. 4.

Output mode-locked pulse trains for the (a) 2nd, (b) 8th, (c) 35th, and (d) 70th harmonic orders.

Fig. 5.
Fig. 5.

RF spectrum of harmonic mode-locked pulses for the (a) 2nd, (b) 8th, (c) 35th, and (d) 70th harmonic order, RBW=1kHz. Inserts: RF spectra in span of 5 GHz, RBW=100kHz.

Fig. 6.
Fig. 6.

Power characteristics of the AML-TDFL. (a) Average output power at 1980 nm with the increase of 1550 nm pump power. (b) Threshold pump power for stable AML pulses and slope efficiency of the AML-TDFL under fundamentally and harmonic mode-locked operations.

Metrics