Abstract

We propose and demonstrate experimentally the first incoherent-light scheme for temporal imaging (magnification) of intensity waveforms. The scheme is based on a time-domain equivalent of a pinhole camera under incoherent illumination, involving two dispersive lines and temporal intensity modulation with a short gate. We report incoherent-light temporal stretching of radiofrequency waveforms by a magnification factor of 2.86, with a time–bandwidth product exceeding 160, i.e., a resolution of 50ps over a temporal aperture of 8ns, totally avoiding the use of chirp-controlled pulsed lasers. This work opens up new perspectives for realization of many critical high-speed signal-processing modules using practical incoherent light-wave schemes.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Treacy, IEEE J. Quantum Electron. 5, 454 (1969).
    [CrossRef]
  2. B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
    [CrossRef]
  3. C. V. Bennett and B. H. Kolner, IEEE J. Quantum Electron. 36, 430 (2000).
    [CrossRef]
  4. R. Salem, M. A. Foster, and A. L. Gaeta, Adv. Opt. Photon. 5, 274 (2013).
  5. J. Azaña and M. A. Muriel, IEEE J. Sel. Top. Quantum Electron. 7, 728 (2001).
    [CrossRef]
  6. J. van Howe, J. Hansryd, and C. Xu, Opt. Lett. 29, 1470 (2004).
    [CrossRef]
  7. J. Azaña, N. K. Berger, B. Levit, and B. Fischer, J. Lightwave Technol. 24, 2663 (2006).
    [CrossRef]
  8. Y. Han and B. Jalali, J. Lightwave Technol. 21, 3085 (2003).
    [CrossRef]
  9. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, Nature 456, 81 (2008).
    [CrossRef]
  10. K. Goda and B. Jalali, Nat. Photonics 7, 102 (2013).
    [CrossRef]
  11. M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, Nature 481, 62 (2012).
    [CrossRef]
  12. J. Chou, O. Boyraz, D. Solli, and B. Jalali, Appl. Phys. Lett. 91, 161105 (2007).
    [CrossRef]
  13. P. Naulleau and E. Leith, Appl. Opt. 34, 4119 (1995).
    [CrossRef]
  14. V. Torres-Company, J. Lancis, and P. Andrés, J. Opt. Soc. Am. A 24, 888 (2007).
    [CrossRef]
  15. C. Dorrer, Opt. Express 17, 3341 (2009).
    [CrossRef]
  16. Y. Park and J. Azaña, Opt. Express 18, 14752 (2010).
    [CrossRef]
  17. M. Young, Phys. Teach. 27, 648 (1989).
    [CrossRef]
  18. B. H. Kolner, J. Opt. Soc. Am. A 14, 3349 (1997).
    [CrossRef]
  19. Z. Wu, J. Dong, J. Hou, S. Yan, Y. Yu, and X. Zhang, Opt. Express 22, 8076 (2014).
    [CrossRef]
  20. B. E. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), Chap. 10.
  21. A. Malacarne, R. Ashrafi, M. Li, S. LaRochelle, J. Yao, and J. Azaña, Opt. Lett. 37, 1355 (2012).
    [CrossRef]

2014

2013

2012

2010

2009

2008

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, Nature 456, 81 (2008).
[CrossRef]

2007

V. Torres-Company, J. Lancis, and P. Andrés, J. Opt. Soc. Am. A 24, 888 (2007).
[CrossRef]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

2006

2004

2003

2001

J. Azaña and M. A. Muriel, IEEE J. Sel. Top. Quantum Electron. 7, 728 (2001).
[CrossRef]

2000

C. V. Bennett and B. H. Kolner, IEEE J. Quantum Electron. 36, 430 (2000).
[CrossRef]

1997

1995

1994

B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
[CrossRef]

1989

M. Young, Phys. Teach. 27, 648 (1989).
[CrossRef]

1969

E. Treacy, IEEE J. Quantum Electron. 5, 454 (1969).
[CrossRef]

Andrés, P.

Ashrafi, R.

Azaña, J.

Bennett, C. V.

C. V. Bennett and B. H. Kolner, IEEE J. Quantum Electron. 36, 430 (2000).
[CrossRef]

Berger, N. K.

Boyraz, O.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

Chou, J.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

Dong, J.

Dorrer, C.

Farsi, A.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, Nature 481, 62 (2012).
[CrossRef]

Fischer, B.

Foster, M. A.

R. Salem, M. A. Foster, and A. L. Gaeta, Adv. Opt. Photon. 5, 274 (2013).

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, Nature 456, 81 (2008).
[CrossRef]

Fridman, M.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, Nature 481, 62 (2012).
[CrossRef]

Gaeta, A. L.

R. Salem, M. A. Foster, and A. L. Gaeta, Adv. Opt. Photon. 5, 274 (2013).

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, Nature 481, 62 (2012).
[CrossRef]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, Nature 456, 81 (2008).
[CrossRef]

Geraghty, D. F.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, Nature 456, 81 (2008).
[CrossRef]

Goda, K.

K. Goda and B. Jalali, Nat. Photonics 7, 102 (2013).
[CrossRef]

Han, Y.

Hansryd, J.

Hou, J.

Jalali, B.

K. Goda and B. Jalali, Nat. Photonics 7, 102 (2013).
[CrossRef]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

Y. Han and B. Jalali, J. Lightwave Technol. 21, 3085 (2003).
[CrossRef]

Kolner, B. H.

C. V. Bennett and B. H. Kolner, IEEE J. Quantum Electron. 36, 430 (2000).
[CrossRef]

B. H. Kolner, J. Opt. Soc. Am. A 14, 3349 (1997).
[CrossRef]

B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
[CrossRef]

Lancis, J.

LaRochelle, S.

Leith, E.

Levit, B.

Li, M.

Lipson, M.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, Nature 456, 81 (2008).
[CrossRef]

Malacarne, A.

Muriel, M. A.

J. Azaña and M. A. Muriel, IEEE J. Sel. Top. Quantum Electron. 7, 728 (2001).
[CrossRef]

Naulleau, P.

Okawachi, Y.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, Nature 481, 62 (2012).
[CrossRef]

Park, Y.

Saleh, B. E.

B. E. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), Chap. 10.

Salem, R.

R. Salem, M. A. Foster, and A. L. Gaeta, Adv. Opt. Photon. 5, 274 (2013).

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, Nature 456, 81 (2008).
[CrossRef]

Solli, D.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

Teich, M. C.

B. E. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), Chap. 10.

Torres-Company, V.

Treacy, E.

E. Treacy, IEEE J. Quantum Electron. 5, 454 (1969).
[CrossRef]

Turner-Foster, A. C.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, Nature 456, 81 (2008).
[CrossRef]

van Howe, J.

Wu, Z.

Xu, C.

Yan, S.

Yao, J.

Young, M.

M. Young, Phys. Teach. 27, 648 (1989).
[CrossRef]

Yu, Y.

Zhang, X.

Adv. Opt. Photon.

Appl. Opt.

Appl. Phys. Lett.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

IEEE J. Quantum Electron.

E. Treacy, IEEE J. Quantum Electron. 5, 454 (1969).
[CrossRef]

B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
[CrossRef]

C. V. Bennett and B. H. Kolner, IEEE J. Quantum Electron. 36, 430 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. Azaña and M. A. Muriel, IEEE J. Sel. Top. Quantum Electron. 7, 728 (2001).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Nat. Photonics

K. Goda and B. Jalali, Nat. Photonics 7, 102 (2013).
[CrossRef]

Nature

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, Nature 481, 62 (2012).
[CrossRef]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, Nature 456, 81 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Teach.

M. Young, Phys. Teach. 27, 648 (1989).
[CrossRef]

Other

B. E. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Illustration of an incoherent-light spatial imaging system (pinhole camera). (b) Proposed scheme for incoherent-light temporal imaging, which is constructed as the temporal equivalent of the incoherent-light pinhole camera. (c) Illustration of the impulse response of the temporal imaging system in (b), ignoring group delays. All represented temporal waveforms and spectra, and the instantaneous frequency curve, are averaged profiles.

Fig. 2.
Fig. 2.

Input resolution and transmission characteristic of the proposed temporal imaging scheme. (a) Numerically simulated input resolution as a function of the pinhole time-width, assuming a temporal pinhole with a Gaussian shape (black circles) and with a rectangular shape (solid gray thick curves), and the analytical approximations for the case of a narrow pinhole (solid red thin curves) and a wide pinhole (blue dotted curves). (b) Normalized peak intensity of the output temporal pulse for input Gaussian pulses of different time widths (experiments versus theory).

Fig. 3.
Fig. 3.

Experimental setup and output waveforms along an incoherent temporal imaging (magnification) system. (a) Experimental setup. (b) Spectrum of the broadband incoherent-light source. (c) Optical output from the temporal pinhole. (d) Input optical temporal waveform. (e) Temporal intensity profile (solid black) of the output image compared with the scaled input temporal waveform (dashed blue), where the scaling between input time and output time is 2.86. All profiles in (b)–(e) are averaged for 256 times. (f) Temporal intensity profile of the output image without averaging.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

δτIn,n(4ln2|Φ¨In|)/ΔTP,
δτIn,wΔTP|1+(Φ¨In/Φ¨Out)|,
ΔTP2ln2|Φ¨InΦ¨Out/(Φ¨In+Φ¨Out)|
δτInΔTP|1(1/M)|.
IOut(τ)IIn(τM)IPinhole(Φ¨InΦ¨In+Φ¨Outτ),

Metrics