Abstract

Continuous wave cavity ringdown spectroscopy requires a rapid termination of the injection of light into the cavity to initiate the decay (i.e., ringdown) event. We demonstrate a technique that accomplishes this through pulsed optical injection of a second laser into the main laser, resulting in 20–100 MHz frequency shifts in the otherwise cavity-locked main laser sufficient to create ringdown events at 3.5 kHz. Data on the frequency shift as a function of both main laser current and relative wavelength are presented, as well as a demonstration that single exponential decays are maintained in the process.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription