Abstract

Continuous wave cavity ringdown spectroscopy requires a rapid termination of the injection of light into the cavity to initiate the decay (i.e., ringdown) event. We demonstrate a technique that accomplishes this through pulsed optical injection of a second laser into the main laser, resulting in 20–100 MHz frequency shifts in the otherwise cavity-locked main laser sufficient to create ringdown events at 3.5 kHz. Data on the frequency shift as a function of both main laser current and relative wavelength are presented, as well as a demonstration that single exponential decays are maintained in the process.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Atkinson, Analyst 128, 117 (2003).
    [CrossRef]
  2. B. A. Paldus and A. A. Kachanov, Can. J. Phys. 83, 975 (2005).
    [CrossRef]
  3. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, Chem. Phys. Lett. 264, 316 (1997).
    [CrossRef]
  4. B. Paldus, J. Harris, J. Martin, J. Xie, and R. Zare, J. Appl. Phys. 82, 3199 (1997).
    [CrossRef]
  5. B. L. Fawcett, A. M. Parkes, D. E. Shallcross, and A. J. Orr-Ewing, Phys. Chem. Chem. Phys. 4, 5960 (2002).
    [CrossRef]
  6. J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B 80, 1027 (2005).
    [CrossRef]
  7. N. J. van Leeuwen, J. C. Diettrich, and A. C. Wilson, Appl. Opt. 42, 3670 (2003).
    [CrossRef]
  8. J. W. Hahn, Y. S. Yoo, J. Y. Lee, J. W. Kim, and H. W. Lee, Appl. Opt. 38, 1859 (1999).
    [CrossRef]
  9. V. Motto-Ros, J. Morville, and P. Rairoux, Appl. Phys. B 87, 531 (2007).
    [CrossRef]
  10. R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  11. T. G. Spence, M. E. Calzada, H. M. Gardner, E. Leefe, H. B. Fontenot, L. Gilevicius, R. W. Hartsock, T. K. Boyson, and C. C. Harb, Opt. Express 20, 8804 (2012).
    [CrossRef]
  12. L. W. H. R. W. Fox, C. W. Oates, and L. Hollberg, in Cavity-Enhanced Spectroscopies, Vol. 40 of Experimental Methods in the Physical Sciences (Academic, 2002).
  13. J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos (Springer, 2008).
  14. P. Laurent, A. Clairon, and C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
    [CrossRef]
  15. G. H. M. Van Tartwijk and D. Lenstra, Quantum Semiclass. Opt. 7, 87 (1995).
    [CrossRef]
  16. B. R. Bennett, R. A. Soref, and J. A. del Alamo, IEEE J. Quantum Electron. 26, 113 (1990).
    [CrossRef]
  17. W. Kowalsky and K. J. Ebeling, Opt. Lett. 12, 1053 (1987).
    [CrossRef]
  18. K. Ishida, H. Nakamura, H. Matsumura, T. Kadoi, and H. Inoue, Appl. Phys. Lett. 50, 141 (1987).
    [CrossRef]
  19. Texas Instruments, Inc., “LM 555 Datasheet,” (2000).
  20. M. Gallant, “Pulse circuits for infrared LEDs and visible diode lasers,” 2009, http://www.jensign.com/opto/ledlaserdrivers/ .
  21. G. H. M. Van Tartwijk, G. Muijres, D. Lenstra, M. P. Van Exter, and J. P. Woerdman, Electron. Lett. 29, 137 (1993).
    [CrossRef]
  22. J. Manning, R. Olshansky, and C. B. Su, IEEE J. Quantum Electron. 19, 1525 (1983).
    [CrossRef]

2012 (1)

2007 (1)

V. Motto-Ros, J. Morville, and P. Rairoux, Appl. Phys. B 87, 531 (2007).
[CrossRef]

2005 (2)

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B 80, 1027 (2005).
[CrossRef]

B. A. Paldus and A. A. Kachanov, Can. J. Phys. 83, 975 (2005).
[CrossRef]

2003 (2)

2002 (1)

B. L. Fawcett, A. M. Parkes, D. E. Shallcross, and A. J. Orr-Ewing, Phys. Chem. Chem. Phys. 4, 5960 (2002).
[CrossRef]

1999 (1)

1997 (2)

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, Chem. Phys. Lett. 264, 316 (1997).
[CrossRef]

B. Paldus, J. Harris, J. Martin, J. Xie, and R. Zare, J. Appl. Phys. 82, 3199 (1997).
[CrossRef]

1995 (1)

G. H. M. Van Tartwijk and D. Lenstra, Quantum Semiclass. Opt. 7, 87 (1995).
[CrossRef]

1993 (1)

G. H. M. Van Tartwijk, G. Muijres, D. Lenstra, M. P. Van Exter, and J. P. Woerdman, Electron. Lett. 29, 137 (1993).
[CrossRef]

1990 (1)

B. R. Bennett, R. A. Soref, and J. A. del Alamo, IEEE J. Quantum Electron. 26, 113 (1990).
[CrossRef]

1989 (1)

P. Laurent, A. Clairon, and C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

1987 (2)

W. Kowalsky and K. J. Ebeling, Opt. Lett. 12, 1053 (1987).
[CrossRef]

K. Ishida, H. Nakamura, H. Matsumura, T. Kadoi, and H. Inoue, Appl. Phys. Lett. 50, 141 (1987).
[CrossRef]

1983 (2)

J. Manning, R. Olshansky, and C. B. Su, IEEE J. Quantum Electron. 19, 1525 (1983).
[CrossRef]

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Atkinson, D. B.

D. B. Atkinson, Analyst 128, 117 (2003).
[CrossRef]

Bennett, B. R.

B. R. Bennett, R. A. Soref, and J. A. del Alamo, IEEE J. Quantum Electron. 26, 113 (1990).
[CrossRef]

Boyson, T. K.

Breant, C.

P. Laurent, A. Clairon, and C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

Calzada, M. E.

Chenevier, M.

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B 80, 1027 (2005).
[CrossRef]

Clairon, A.

P. Laurent, A. Clairon, and C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

del Alamo, J. A.

B. R. Bennett, R. A. Soref, and J. A. del Alamo, IEEE J. Quantum Electron. 26, 113 (1990).
[CrossRef]

Diettrich, J. C.

Drever, R.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Ebeling, K. J.

Fawcett, B. L.

B. L. Fawcett, A. M. Parkes, D. E. Shallcross, and A. J. Orr-Ewing, Phys. Chem. Chem. Phys. 4, 5960 (2002).
[CrossRef]

Fontenot, H. B.

Ford, G.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Fox, L. W. H. R. W.

L. W. H. R. W. Fox, C. W. Oates, and L. Hollberg, in Cavity-Enhanced Spectroscopies, Vol. 40 of Experimental Methods in the Physical Sciences (Academic, 2002).

Gardner, H. M.

Gilevicius, L.

Hahn, J. W.

Hall, J.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Harb, C. C.

Harris, J.

B. Paldus, J. Harris, J. Martin, J. Xie, and R. Zare, J. Appl. Phys. 82, 3199 (1997).
[CrossRef]

Hartsock, R. W.

Hollberg, L.

L. W. H. R. W. Fox, C. W. Oates, and L. Hollberg, in Cavity-Enhanced Spectroscopies, Vol. 40 of Experimental Methods in the Physical Sciences (Academic, 2002).

Hough, J.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Inoue, H.

K. Ishida, H. Nakamura, H. Matsumura, T. Kadoi, and H. Inoue, Appl. Phys. Lett. 50, 141 (1987).
[CrossRef]

Ishida, K.

K. Ishida, H. Nakamura, H. Matsumura, T. Kadoi, and H. Inoue, Appl. Phys. Lett. 50, 141 (1987).
[CrossRef]

Kachanov, A. A.

B. A. Paldus and A. A. Kachanov, Can. J. Phys. 83, 975 (2005).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, Chem. Phys. Lett. 264, 316 (1997).
[CrossRef]

Kadoi, T.

K. Ishida, H. Nakamura, H. Matsumura, T. Kadoi, and H. Inoue, Appl. Phys. Lett. 50, 141 (1987).
[CrossRef]

Kassi, S.

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B 80, 1027 (2005).
[CrossRef]

Kim, J. W.

Kowalski, F.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Kowalsky, W.

Laurent, P.

P. Laurent, A. Clairon, and C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

Lee, H. W.

Lee, J. Y.

Leefe, E.

Lenstra, D.

G. H. M. Van Tartwijk and D. Lenstra, Quantum Semiclass. Opt. 7, 87 (1995).
[CrossRef]

G. H. M. Van Tartwijk, G. Muijres, D. Lenstra, M. P. Van Exter, and J. P. Woerdman, Electron. Lett. 29, 137 (1993).
[CrossRef]

Manning, J.

J. Manning, R. Olshansky, and C. B. Su, IEEE J. Quantum Electron. 19, 1525 (1983).
[CrossRef]

Martin, J.

B. Paldus, J. Harris, J. Martin, J. Xie, and R. Zare, J. Appl. Phys. 82, 3199 (1997).
[CrossRef]

Matsumura, H.

K. Ishida, H. Nakamura, H. Matsumura, T. Kadoi, and H. Inoue, Appl. Phys. Lett. 50, 141 (1987).
[CrossRef]

Morville, J.

V. Motto-Ros, J. Morville, and P. Rairoux, Appl. Phys. B 87, 531 (2007).
[CrossRef]

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B 80, 1027 (2005).
[CrossRef]

Motto-Ros, V.

V. Motto-Ros, J. Morville, and P. Rairoux, Appl. Phys. B 87, 531 (2007).
[CrossRef]

Muijres, G.

G. H. M. Van Tartwijk, G. Muijres, D. Lenstra, M. P. Van Exter, and J. P. Woerdman, Electron. Lett. 29, 137 (1993).
[CrossRef]

Munley, A.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Nakamura, H.

K. Ishida, H. Nakamura, H. Matsumura, T. Kadoi, and H. Inoue, Appl. Phys. Lett. 50, 141 (1987).
[CrossRef]

Oates, C. W.

L. W. H. R. W. Fox, C. W. Oates, and L. Hollberg, in Cavity-Enhanced Spectroscopies, Vol. 40 of Experimental Methods in the Physical Sciences (Academic, 2002).

Ohtsubo, J.

J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos (Springer, 2008).

Olshansky, R.

J. Manning, R. Olshansky, and C. B. Su, IEEE J. Quantum Electron. 19, 1525 (1983).
[CrossRef]

Orr-Ewing, A. J.

B. L. Fawcett, A. M. Parkes, D. E. Shallcross, and A. J. Orr-Ewing, Phys. Chem. Chem. Phys. 4, 5960 (2002).
[CrossRef]

Paldus, B.

B. Paldus, J. Harris, J. Martin, J. Xie, and R. Zare, J. Appl. Phys. 82, 3199 (1997).
[CrossRef]

Paldus, B. A.

B. A. Paldus and A. A. Kachanov, Can. J. Phys. 83, 975 (2005).
[CrossRef]

Parkes, A. M.

B. L. Fawcett, A. M. Parkes, D. E. Shallcross, and A. J. Orr-Ewing, Phys. Chem. Chem. Phys. 4, 5960 (2002).
[CrossRef]

Rairoux, P.

V. Motto-Ros, J. Morville, and P. Rairoux, Appl. Phys. B 87, 531 (2007).
[CrossRef]

Romanini, D.

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B 80, 1027 (2005).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, Chem. Phys. Lett. 264, 316 (1997).
[CrossRef]

Sadeghi, N.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, Chem. Phys. Lett. 264, 316 (1997).
[CrossRef]

Shallcross, D. E.

B. L. Fawcett, A. M. Parkes, D. E. Shallcross, and A. J. Orr-Ewing, Phys. Chem. Chem. Phys. 4, 5960 (2002).
[CrossRef]

Soref, R. A.

B. R. Bennett, R. A. Soref, and J. A. del Alamo, IEEE J. Quantum Electron. 26, 113 (1990).
[CrossRef]

Spence, T. G.

Stoeckel, F.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, Chem. Phys. Lett. 264, 316 (1997).
[CrossRef]

Su, C. B.

J. Manning, R. Olshansky, and C. B. Su, IEEE J. Quantum Electron. 19, 1525 (1983).
[CrossRef]

Van Exter, M. P.

G. H. M. Van Tartwijk, G. Muijres, D. Lenstra, M. P. Van Exter, and J. P. Woerdman, Electron. Lett. 29, 137 (1993).
[CrossRef]

van Leeuwen, N. J.

Van Tartwijk, G. H. M.

G. H. M. Van Tartwijk and D. Lenstra, Quantum Semiclass. Opt. 7, 87 (1995).
[CrossRef]

G. H. M. Van Tartwijk, G. Muijres, D. Lenstra, M. P. Van Exter, and J. P. Woerdman, Electron. Lett. 29, 137 (1993).
[CrossRef]

Ward, H.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Wilson, A. C.

Woerdman, J. P.

G. H. M. Van Tartwijk, G. Muijres, D. Lenstra, M. P. Van Exter, and J. P. Woerdman, Electron. Lett. 29, 137 (1993).
[CrossRef]

Xie, J.

B. Paldus, J. Harris, J. Martin, J. Xie, and R. Zare, J. Appl. Phys. 82, 3199 (1997).
[CrossRef]

Yoo, Y. S.

Zare, R.

B. Paldus, J. Harris, J. Martin, J. Xie, and R. Zare, J. Appl. Phys. 82, 3199 (1997).
[CrossRef]

Analyst (1)

D. B. Atkinson, Analyst 128, 117 (2003).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (3)

V. Motto-Ros, J. Morville, and P. Rairoux, Appl. Phys. B 87, 531 (2007).
[CrossRef]

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B 80, 1027 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

K. Ishida, H. Nakamura, H. Matsumura, T. Kadoi, and H. Inoue, Appl. Phys. Lett. 50, 141 (1987).
[CrossRef]

Can. J. Phys. (1)

B. A. Paldus and A. A. Kachanov, Can. J. Phys. 83, 975 (2005).
[CrossRef]

Chem. Phys. Lett. (1)

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, Chem. Phys. Lett. 264, 316 (1997).
[CrossRef]

Electron. Lett. (1)

G. H. M. Van Tartwijk, G. Muijres, D. Lenstra, M. P. Van Exter, and J. P. Woerdman, Electron. Lett. 29, 137 (1993).
[CrossRef]

IEEE J. Quantum Electron. (3)

J. Manning, R. Olshansky, and C. B. Su, IEEE J. Quantum Electron. 19, 1525 (1983).
[CrossRef]

P. Laurent, A. Clairon, and C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

B. R. Bennett, R. A. Soref, and J. A. del Alamo, IEEE J. Quantum Electron. 26, 113 (1990).
[CrossRef]

J. Appl. Phys. (1)

B. Paldus, J. Harris, J. Martin, J. Xie, and R. Zare, J. Appl. Phys. 82, 3199 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

B. L. Fawcett, A. M. Parkes, D. E. Shallcross, and A. J. Orr-Ewing, Phys. Chem. Chem. Phys. 4, 5960 (2002).
[CrossRef]

Quantum Semiclass. Opt. (1)

G. H. M. Van Tartwijk and D. Lenstra, Quantum Semiclass. Opt. 7, 87 (1995).
[CrossRef]

Other (4)

L. W. H. R. W. Fox, C. W. Oates, and L. Hollberg, in Cavity-Enhanced Spectroscopies, Vol. 40 of Experimental Methods in the Physical Sciences (Academic, 2002).

J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos (Springer, 2008).

Texas Instruments, Inc., “LM 555 Datasheet,” (2000).

M. Gallant, “Pulse circuits for infrared LEDs and visible diode lasers,” 2009, http://www.jensign.com/opto/ledlaserdrivers/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Diagram of the system. The main laser is injected into the optical cavity for the ringdown measurement. A pulsed laser is aligned to inject light back into the main laser. A simple pulsing/triggering circuit is used to activate the pulsed laser. A tunable diode laser and a secondary detector are used to detect frequency shifts in the main laser using OHD for initial characterization (dashed–boxed region is not a permanent part of the system). A digital oscilloscope measures the cavity output and optical heterodyne signals. The Faraday rotator and polarizer control optical feedback to the main laser to enable locking to the cavity. The quarter-wave plate reduces coherent reflections from the pulsed laser.

Fig. 2.
Fig. 2.

Induced frequency shift as a function of the wavelength difference between the main laser and the pulse laser. In the main figure, the main laser wavelength is adjusted by changing its temperature. The average of three different measurements taken at each wavelength is shown, with error bars indicating the max and min. Inset: the frequency shift as a function of main laser current, with laser temperature fixed. The range covers approximately 34 GHz (0.2 nm). Again, average is shown for three different measurements at each current level and error bars indicate max and min.

Fig. 3.
Fig. 3.

(a) Two ringdowns taken from the 3.5 kHz rate data described in the text. The solid line shows the output of the cavity, and the dotted gray line shows the pulse laser applied voltage. The cavity builds up energy immediately following the pulse, indicating the main laser has returned to the original frequency and relocked to the cavity. (b) A single ringdown event induced by the pulsed laser frequency shifting the main laser captured on an 8-bit digital oscilloscope (dots). To reduce quantization error, the data was resampled at a rate of 15. The exponential fit using a Levenberg–Marquardt algorithm is shown (solid line), as well as the residual to the fit (inset).

Metrics