Abstract

A photonic nanojet is a highly focused optical beam with a subwavelength waist on the shadow side of the sphere. Successful far-field applications require long nanojets that extend afar. Using the exact Mie theory, we show that ultralong nanojets can be generated using a simple two-layer microsphere structure, using conventional optical materials that are readily available. In particular, we show that for a glass-based two-layer microsphere, the nanojet has an extension of 22 wavelengths. We also show that long nanojets can be formed using semiconductors at infrared frequencies in free space.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatial control of photonic nanojets

Jinlong Zhu and Lynford L. Goddard
Opt. Express 24(26) 30444-30464 (2016)

Tunable photonic nanojet formed by generalized Luneburg lens

Xiurun Mao, Yang Yang, Haitao Dai, Dan Luo, Baoli Yao, and Shaohui Yan
Opt. Express 23(20) 26426-26433 (2015)

Direct imaging of photonic nanojets

Patrick Ferrand, Jérôme Wenger, Alexis Devilez, Martina Pianta, Brian Stout, Nicolas Bonod, Evgueni Popov , and Hervé Rigneault
Opt. Express 16(10) 6930-6940 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription