Abstract

We describe two noncollinear optical parametric amplifier (NOPA) systems pumped by either the second (515 nm) or the third (343 nm) harmonic from an Yb:KGW source. Pulse durations as short as 6.8 fs are readily obtained by compression with chirped mirrors. The availability of both the second and third harmonics for NOPA pumping allows for gap-free tuning from 520 to 980 nm. The use of an intermediate NOPA to generate seed light at 780 nm extends the tuning range of the third harmonic pumped NOPA toward 450 nm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilhelm, J. Piel, and E. Riedle, Opt. Lett. 22, 1494 (1997).
    [CrossRef]
  2. G. Cerullo, M. Nisoli, S. Stagira, and S. De Silvestri, Opt. Lett. 23, 1283 (1998).
    [CrossRef]
  3. C. Homann, P. Lang, and E. Riedle, J. Opt. Soc. Am. B 29, 2765 (2012).
    [CrossRef]
  4. D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, Opt. Lett. 33, 741 (2008).
    [CrossRef]
  5. G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
    [CrossRef]
  6. A. Baltuska, T. Fuji, and T. Kobayashi, Opt. Lett. 27, 306 (2002).
    [CrossRef]
  7. A. Steinmann, A. Killi, G. Palmer, T. Binhammer, and U. Morgner, Opt. Express 14, 10627 (2006).
    [CrossRef]
  8. C. Homann, C. Schriever, P. Baum, and E. Riedle, Opt. Express 16, 5746 (2008).
    [CrossRef]
  9. O. Mücke, D. Sidorov, P. Dombi, A. Pugzlys, A. Baltushka, S. Alisauskas, V. Smilgevicius, J. Pocius, L. Giniunas, R. Danielius, and N. Forget, Opt. Lett. 34, 118 (2009).
    [CrossRef]
  10. A. Harth, M. Schultze, T. Lang, T. Binhammer, S. Rausch, and U. Morgner, Opt. Express 20, 3076 (2012).
    [CrossRef]
  11. M. Bradler and E. Riedle, Opt. Lett. 39, 2588 (2014).
    [CrossRef]
  12. M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, Opt. Lett. 26, 1155 (2001).
    [CrossRef]
  13. D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
  14. C. Manzoni, S.-W. Huang, G. Cirmi, P. Farinello, J. Moses, F. X. Kärtner, and G. Cerullo, Opt. Lett. 37, 1880 (2012).
    [CrossRef]
  15. M. Bradler, P. Baum, and E. Riedle, Appl. Phys. B 97, 561 (2009).
    [CrossRef]
  16. P. Baum, S. Lochbrunner, and E. Riedle, Opt. Lett. 29, 1686 (2004).
    [CrossRef]

2014 (1)

2012 (3)

2009 (2)

2008 (2)

2006 (1)

2004 (1)

2003 (1)

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[CrossRef]

2002 (1)

2001 (1)

1998 (1)

1997 (1)

1993 (1)

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).

Alisauskas, S.

Angelow, G.

Baltushka, A.

Baltuska, A.

Baum, P.

Binhammer, T.

Bonora, S.

Bradler, M.

M. Bradler and E. Riedle, Opt. Lett. 39, 2588 (2014).
[CrossRef]

M. Bradler, P. Baum, and E. Riedle, Appl. Phys. B 97, 561 (2009).
[CrossRef]

Brida, D.

Cerullo, G.

Cirmi, G.

Danielius, R.

De Silvestri, S.

Dombi, P.

Farinello, P.

Forget, N.

Fuji, T.

Gallmann, L.

Giniunas, L.

Harth, A.

Homann, C.

Huang, S.-W.

Kane, D. J.

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).

Kärtner, F. X.

Keller, U.

Killi, A.

Kobayashi, T.

Lang, P.

Lang, T.

Lochbrunner, S.

Manzoni, C.

Matuschek, N.

Morgner, U.

Moses, J.

Mücke, O.

Nisoli, M.

Palmer, G.

Piel, J.

Pocius, J.

Pugzlys, A.

Rausch, S.

Riedle, E.

Scheuer, V.

Schriever, C.

Schultze, M.

Sidorov, D.

Smilgevicius, V.

Stagira, S.

Steinmann, A.

Steinmeyer, G.

Trebino, R.

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).

Tschudi, T.

Villoresi, P.

Wilhelm, T.

Zavelani-Rossi, M.

Appl. Phys. B (1)

M. Bradler, P. Baum, and E. Riedle, Appl. Phys. B 97, 561 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (9)

Rev. Sci. Instrum. (1)

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the second harmonic (515 nm) pumped NIR-NOPA: ND, variable neutral density filter; SAP, 3 mm sapphire plate (Foctek Photonics); HS1030, 1 mm fused silica, 0° AOI, 1030 nm harmonic separator (EKSMA Optics); BBO, β-barium borate 2.0 mm θ=23.5° type 1 (Foctek Photonics); CM, 680–980 nm chirped mirror compression GDD and TOD optimized (Layertec); FS-wedges, 2° apex angle fused silica prims pair (Layertec).

Fig. 2.
Fig. 2.

Performance of the NIR-NOPA: (a) spectra of the amplified 3.0 μJ signal obtained with 515 nm pumping (solid) and SHG-FROG retrieved spectrum (dashed); (b) corresponding SHG-FROG; (c) retrieved temporal profile and phase.

Fig. 3.
Fig. 3.

780 nm seed pulse and WL properties: (a) spectral distribution as a function of spatial position within the WL obtained with a 1030 nm seed; (b) comparison of WL spectra for different seed wavelengths: 1030 nm (orange), 780 nm (green), and 650 nm (blue); and (c) spectral distribution as a function of spatial position within the WL obtained with a 780 nm seed.

Fig. 4.
Fig. 4.

Schematic of the VIS-NOPA: ND, variable neutral density filter; SAP, 3 mm sapphire plate (Foctek Photonics); NB780, 780 nm dielectric 10 nm FWHM bandpass filter (FB780-10, Thorlabs); BBOSH0, 2.0 mm θ=23.5° type 1 (Foctek Photonics); BBOSH1, 2.0 mm θ=23.5° type 1 (Foctek Photonics); BBOTH0, 2.0 mm θ=37° type 1 (Foctek Photonics); FEL550, 550 nm dielectric longpass filter (FEL0550, Thorlabs); CM, 480–650 nm chirped mirror compression GDD and TOD optimized (Layertec); and FS-wedges, 2° apex angle fused silica prism pair (Layertec).

Fig. 5.
Fig. 5.

Performance of the VIS-NOPA pumped at 343 nm: (a) amplified output pulses with 343 nm pumping. Pulse used for compression (orange) and pulses highlighting the tuning capability with a 2 mm BBO (green dotted–dashed, blue dotted), as well as the SHG-FROG retrieved pulse spectrum (dashed, orange); (b) SHG-FROG for the orange pulse shown in (a); (c) retrieved temporal profile and phase.

Metrics