Abstract

The plasmon mode characteristics of metallic nanowire embedded in a uniaxial anisotropic dielectric are investigated theoretically. The hybrid plasmon modes found in this structure are significantly different from the traditional plasmon modes of metallic nanowire in a homogeneous isotropic dielectric. In contrast to the transverse-magnetic-like wave for a traditional fundamental mode, the hybrid fundamental mode of metallic nanowire involves a nonzero longitudinal magnetic field component. The degenerate behaviors of adjacent order plasmon modes are demonstrated in the case of a strongly anisotropic dielectric. Moreover, the dependence of the degenerate characteristics on the radius of a metallic nanowire and the excited wavelength are clearly shown by dispersion relation. The results of the study provide a useful approach to modulate surface plasmon polaritons with anisotropic medium.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Kiefer and S. Schlücker, Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications (Wiley, 2013).
  2. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997).
    [CrossRef]
  3. J. X. Chen, P. Wang, X. L. Wang, Y. H. Lu, R. S. Zheng, H. Ming, and Q. W. Zhan, Appl. Phys. Lett. 94, 081117 (2009).
    [CrossRef]
  4. H. C. Zhou, X. Chen, P. Hou, and C. F. Li, Opt. Lett. 33, 1249 (2008).
    [CrossRef]
  5. H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
    [CrossRef]
  6. J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, Nano Lett. 12, 602 (2012).
    [CrossRef]
  7. E. Ozbay, Science 311, 189 (2006).
    [CrossRef]
  8. R. Li, C. Cheng, F. F. Ren, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, Appl. Phys. Lett. 92, 141115 (2008).
    [CrossRef]
  9. X. L. Wang, P. Wang, J. X. Chen, Y. H. Lu, H. Ming, and Q. W. Zhan, Appl. Phys. Lett. 98, 021113 (2011).
    [CrossRef]
  10. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, Nanotechnology 23, 444006 (2012).
    [CrossRef]
  11. R. Warmbier, G. S. Manyali, and A. Quandt, Phys. Rev. B 85, 085442 (2012).
    [CrossRef]
  12. I. Abdulhalim, J. Opt. A Pure Appl. Opt. 11, 015002 (2009).
    [CrossRef]
  13. R. Luo, Y. Gu, X. K. Li, L. J. Wang, I. C. Khoo, and Q. H. Gong, Appl. Phys. Lett. 102, 011117 (2013).
    [CrossRef]
  14. C. J. Barrelet, A. B. Greytak, and C. M. Lieber, Nano Lett. 4, 1981 (2004).
    [CrossRef]
  15. D. Pan, H. Wei, and H. X. Xu, Chin. Phys. B 22, 097305 (2013).
    [CrossRef]
  16. S. P. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. X. Xu, Phys. Rev. Lett. 107, 096801 (2011).
    [CrossRef]
  17. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, Phys. Rev. Lett. 95, 257403 (2005).
    [CrossRef]
  18. Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, Nano Lett. 10, 1950 (2010).
    [CrossRef]
  19. H. Wei, Z. X. Wang, X. R. Tian, M. Käll, and H. X. Xu, Nat. Commun. 2, 387 (2011).
    [CrossRef]
  20. C. L. Chen, J. Lightwave Technol. 5, 53 (1987).
    [CrossRef]
  21. X. Jiangbo, Z. Zhou, Y. Du, and D. Gong, J. Lightwave Technol. 27, 2989 (2009).
    [CrossRef]
  22. The detailed description of the solution process will be published elsewhere.
  23. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]

2013

R. Luo, Y. Gu, X. K. Li, L. J. Wang, I. C. Khoo, and Q. H. Gong, Appl. Phys. Lett. 102, 011117 (2013).
[CrossRef]

D. Pan, H. Wei, and H. X. Xu, Chin. Phys. B 22, 097305 (2013).
[CrossRef]

2012

D. Rukhlenko, M. Premaratne, and G. P. Agrawal, Nanotechnology 23, 444006 (2012).
[CrossRef]

R. Warmbier, G. S. Manyali, and A. Quandt, Phys. Rev. B 85, 085442 (2012).
[CrossRef]

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, Nano Lett. 12, 602 (2012).
[CrossRef]

2011

S. P. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. X. Xu, Phys. Rev. Lett. 107, 096801 (2011).
[CrossRef]

X. L. Wang, P. Wang, J. X. Chen, Y. H. Lu, H. Ming, and Q. W. Zhan, Appl. Phys. Lett. 98, 021113 (2011).
[CrossRef]

H. Wei, Z. X. Wang, X. R. Tian, M. Käll, and H. X. Xu, Nat. Commun. 2, 387 (2011).
[CrossRef]

2010

Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, Nano Lett. 10, 1950 (2010).
[CrossRef]

H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
[CrossRef]

2009

I. Abdulhalim, J. Opt. A Pure Appl. Opt. 11, 015002 (2009).
[CrossRef]

J. X. Chen, P. Wang, X. L. Wang, Y. H. Lu, R. S. Zheng, H. Ming, and Q. W. Zhan, Appl. Phys. Lett. 94, 081117 (2009).
[CrossRef]

X. Jiangbo, Z. Zhou, Y. Du, and D. Gong, J. Lightwave Technol. 27, 2989 (2009).
[CrossRef]

2008

H. C. Zhou, X. Chen, P. Hou, and C. F. Li, Opt. Lett. 33, 1249 (2008).
[CrossRef]

R. Li, C. Cheng, F. F. Ren, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, Appl. Phys. Lett. 92, 141115 (2008).
[CrossRef]

2006

E. Ozbay, Science 311, 189 (2006).
[CrossRef]

2005

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef]

2004

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, Nano Lett. 4, 1981 (2004).
[CrossRef]

1997

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

1987

C. L. Chen, J. Lightwave Technol. 5, 53 (1987).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Abdulhalim, I.

I. Abdulhalim, J. Opt. A Pure Appl. Opt. 11, 015002 (2009).
[CrossRef]

Agrawal, G. P.

D. Rukhlenko, M. Premaratne, and G. P. Agrawal, Nanotechnology 23, 444006 (2012).
[CrossRef]

Armani, A. M.

H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
[CrossRef]

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef]

Bao, K.

S. P. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. X. Xu, Phys. Rev. Lett. 107, 096801 (2011).
[CrossRef]

Barrelet, C. J.

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, Nano Lett. 4, 1981 (2004).
[CrossRef]

Chen, C. L.

C. L. Chen, J. Lightwave Technol. 5, 53 (1987).
[CrossRef]

Chen, J.

R. Li, C. Cheng, F. F. Ren, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, Appl. Phys. Lett. 92, 141115 (2008).
[CrossRef]

Chen, J. X.

X. L. Wang, P. Wang, J. X. Chen, Y. H. Lu, H. Ming, and Q. W. Zhan, Appl. Phys. Lett. 98, 021113 (2011).
[CrossRef]

J. X. Chen, P. Wang, X. L. Wang, Y. H. Lu, R. S. Zheng, H. Ming, and Q. W. Zhan, Appl. Phys. Lett. 94, 081117 (2009).
[CrossRef]

Chen, X.

Cheng, C.

R. Li, C. Cheng, F. F. Ren, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, Appl. Phys. Lett. 92, 141115 (2008).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Dasari, R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Ding, J. P.

R. Li, C. Cheng, F. F. Ren, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, Appl. Phys. Lett. 92, 141115 (2008).
[CrossRef]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef]

Du, Y.

Fan, Y. X.

R. Li, C. Cheng, F. F. Ren, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, Appl. Phys. Lett. 92, 141115 (2008).
[CrossRef]

Fang, Y. R.

Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, Nano Lett. 10, 1950 (2010).
[CrossRef]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Feng, J.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, Nano Lett. 12, 602 (2012).
[CrossRef]

Gong, D.

Gong, Q. H.

R. Luo, Y. Gu, X. K. Li, L. J. Wang, I. C. Khoo, and Q. H. Gong, Appl. Phys. Lett. 102, 011117 (2013).
[CrossRef]

Greytak, A. B.

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, Nano Lett. 4, 1981 (2004).
[CrossRef]

Gu, Y.

R. Luo, Y. Gu, X. K. Li, L. J. Wang, I. C. Khoo, and Q. H. Gong, Appl. Phys. Lett. 102, 011117 (2013).
[CrossRef]

Håkanson, U.

S. P. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. X. Xu, Phys. Rev. Lett. 107, 096801 (2011).
[CrossRef]

Halas, N. J.

S. P. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. X. Xu, Phys. Rev. Lett. 107, 096801 (2011).
[CrossRef]

Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, Nano Lett. 10, 1950 (2010).
[CrossRef]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef]

Hou, P.

Huang, Y. Z.

Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, Nano Lett. 10, 1950 (2010).
[CrossRef]

Hunt, H. K.

H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
[CrossRef]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Jiangbo, X.

Johnson, P. B.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Käll, M.

H. Wei, Z. X. Wang, X. R. Tian, M. Käll, and H. X. Xu, Nat. Commun. 2, 387 (2011).
[CrossRef]

Khoo, I. C.

R. Luo, Y. Gu, X. K. Li, L. J. Wang, I. C. Khoo, and Q. H. Gong, Appl. Phys. Lett. 102, 011117 (2013).
[CrossRef]

Kiefer, W.

W. Kiefer and S. Schlücker, Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications (Wiley, 2013).

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef]

Li, C. F.

Li, R.

R. Li, C. Cheng, F. F. Ren, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, Appl. Phys. Lett. 92, 141115 (2008).
[CrossRef]

Li, X. K.

R. Luo, Y. Gu, X. K. Li, L. J. Wang, I. C. Khoo, and Q. H. Gong, Appl. Phys. Lett. 102, 011117 (2013).
[CrossRef]

Li, Z. P.

Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, Nano Lett. 10, 1950 (2010).
[CrossRef]

Lieber, C. M.

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, Nano Lett. 4, 1981 (2004).
[CrossRef]

Lu, Y. H.

X. L. Wang, P. Wang, J. X. Chen, Y. H. Lu, H. Ming, and Q. W. Zhan, Appl. Phys. Lett. 98, 021113 (2011).
[CrossRef]

J. X. Chen, P. Wang, X. L. Wang, Y. H. Lu, R. S. Zheng, H. Ming, and Q. W. Zhan, Appl. Phys. Lett. 94, 081117 (2009).
[CrossRef]

Luo, R.

R. Luo, Y. Gu, X. K. Li, L. J. Wang, I. C. Khoo, and Q. H. Gong, Appl. Phys. Lett. 102, 011117 (2013).
[CrossRef]

Manyali, G. S.

R. Warmbier, G. S. Manyali, and A. Quandt, Phys. Rev. B 85, 085442 (2012).
[CrossRef]

Mehta, V.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, Nano Lett. 12, 602 (2012).
[CrossRef]

Ming, H.

X. L. Wang, P. Wang, J. X. Chen, Y. H. Lu, H. Ming, and Q. W. Zhan, Appl. Phys. Lett. 98, 021113 (2011).
[CrossRef]

J. X. Chen, P. Wang, X. L. Wang, Y. H. Lu, R. S. Zheng, H. Ming, and Q. W. Zhan, Appl. Phys. Lett. 94, 081117 (2009).
[CrossRef]

Nordlander, P.

S. P. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. X. Xu, Phys. Rev. Lett. 107, 096801 (2011).
[CrossRef]

Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, Nano Lett. 10, 1950 (2010).
[CrossRef]

Ozbay, E.

E. Ozbay, Science 311, 189 (2006).
[CrossRef]

Pacifici, D.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, Nano Lett. 12, 602 (2012).
[CrossRef]

Palmore, G. T. R.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, Nano Lett. 12, 602 (2012).
[CrossRef]

Pan, D.

D. Pan, H. Wei, and H. X. Xu, Chin. Phys. B 22, 097305 (2013).
[CrossRef]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Premaratne, M.

D. Rukhlenko, M. Premaratne, and G. P. Agrawal, Nanotechnology 23, 444006 (2012).
[CrossRef]

Quandt, A.

R. Warmbier, G. S. Manyali, and A. Quandt, Phys. Rev. B 85, 085442 (2012).
[CrossRef]

Ren, F. F.

R. Li, C. Cheng, F. F. Ren, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, Appl. Phys. Lett. 92, 141115 (2008).
[CrossRef]

Rhieu, S. Y.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, Nano Lett. 12, 602 (2012).
[CrossRef]

Roelke, A.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, Nano Lett. 12, 602 (2012).
[CrossRef]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef]

Rukhlenko, D.

D. Rukhlenko, M. Premaratne, and G. P. Agrawal, Nanotechnology 23, 444006 (2012).
[CrossRef]

Schlücker, S.

W. Kiefer and S. Schlücker, Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications (Wiley, 2013).

Siu, V. S.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, Nano Lett. 12, 602 (2012).
[CrossRef]

Tian, X. R.

H. Wei, Z. X. Wang, X. R. Tian, M. Käll, and H. X. Xu, Nat. Commun. 2, 387 (2011).
[CrossRef]

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef]

Wang, H. T.

R. Li, C. Cheng, F. F. Ren, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, Appl. Phys. Lett. 92, 141115 (2008).
[CrossRef]

Wang, L. J.

R. Luo, Y. Gu, X. K. Li, L. J. Wang, I. C. Khoo, and Q. H. Gong, Appl. Phys. Lett. 102, 011117 (2013).
[CrossRef]

Wang, P.

X. L. Wang, P. Wang, J. X. Chen, Y. H. Lu, H. Ming, and Q. W. Zhan, Appl. Phys. Lett. 98, 021113 (2011).
[CrossRef]

J. X. Chen, P. Wang, X. L. Wang, Y. H. Lu, R. S. Zheng, H. Ming, and Q. W. Zhan, Appl. Phys. Lett. 94, 081117 (2009).
[CrossRef]

Wang, X. L.

X. L. Wang, P. Wang, J. X. Chen, Y. H. Lu, H. Ming, and Q. W. Zhan, Appl. Phys. Lett. 98, 021113 (2011).
[CrossRef]

J. X. Chen, P. Wang, X. L. Wang, Y. H. Lu, R. S. Zheng, H. Ming, and Q. W. Zhan, Appl. Phys. Lett. 94, 081117 (2009).
[CrossRef]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Wang, Z. X.

H. Wei, Z. X. Wang, X. R. Tian, M. Käll, and H. X. Xu, Nat. Commun. 2, 387 (2011).
[CrossRef]

Warmbier, R.

R. Warmbier, G. S. Manyali, and A. Quandt, Phys. Rev. B 85, 085442 (2012).
[CrossRef]

Wei, H.

D. Pan, H. Wei, and H. X. Xu, Chin. Phys. B 22, 097305 (2013).
[CrossRef]

S. P. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. X. Xu, Phys. Rev. Lett. 107, 096801 (2011).
[CrossRef]

H. Wei, Z. X. Wang, X. R. Tian, M. Käll, and H. X. Xu, Nat. Commun. 2, 387 (2011).
[CrossRef]

Xu, H. X.

D. Pan, H. Wei, and H. X. Xu, Chin. Phys. B 22, 097305 (2013).
[CrossRef]

S. P. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. X. Xu, Phys. Rev. Lett. 107, 096801 (2011).
[CrossRef]

H. Wei, Z. X. Wang, X. R. Tian, M. Käll, and H. X. Xu, Nat. Commun. 2, 387 (2011).
[CrossRef]

Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, Nano Lett. 10, 1950 (2010).
[CrossRef]

Zhan, Q. W.

X. L. Wang, P. Wang, J. X. Chen, Y. H. Lu, H. Ming, and Q. W. Zhan, Appl. Phys. Lett. 98, 021113 (2011).
[CrossRef]

J. X. Chen, P. Wang, X. L. Wang, Y. H. Lu, R. S. Zheng, H. Ming, and Q. W. Zhan, Appl. Phys. Lett. 94, 081117 (2009).
[CrossRef]

Zhang, S. P.

S. P. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. X. Xu, Phys. Rev. Lett. 107, 096801 (2011).
[CrossRef]

Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, Nano Lett. 10, 1950 (2010).
[CrossRef]

Zheng, R. S.

J. X. Chen, P. Wang, X. L. Wang, Y. H. Lu, R. S. Zheng, H. Ming, and Q. W. Zhan, Appl. Phys. Lett. 94, 081117 (2009).
[CrossRef]

Zhou, H. C.

Zhou, Z.

Appl. Phys. Lett.

R. Li, C. Cheng, F. F. Ren, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, Appl. Phys. Lett. 92, 141115 (2008).
[CrossRef]

X. L. Wang, P. Wang, J. X. Chen, Y. H. Lu, H. Ming, and Q. W. Zhan, Appl. Phys. Lett. 98, 021113 (2011).
[CrossRef]

R. Luo, Y. Gu, X. K. Li, L. J. Wang, I. C. Khoo, and Q. H. Gong, Appl. Phys. Lett. 102, 011117 (2013).
[CrossRef]

J. X. Chen, P. Wang, X. L. Wang, Y. H. Lu, R. S. Zheng, H. Ming, and Q. W. Zhan, Appl. Phys. Lett. 94, 081117 (2009).
[CrossRef]

Chin. Phys. B

D. Pan, H. Wei, and H. X. Xu, Chin. Phys. B 22, 097305 (2013).
[CrossRef]

J. Lightwave Technol.

J. Opt. A Pure Appl. Opt.

I. Abdulhalim, J. Opt. A Pure Appl. Opt. 11, 015002 (2009).
[CrossRef]

Nano Lett.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, Nano Lett. 12, 602 (2012).
[CrossRef]

Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, Nano Lett. 10, 1950 (2010).
[CrossRef]

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, Nano Lett. 4, 1981 (2004).
[CrossRef]

Nanoscale

H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
[CrossRef]

Nanotechnology

D. Rukhlenko, M. Premaratne, and G. P. Agrawal, Nanotechnology 23, 444006 (2012).
[CrossRef]

Nat. Commun.

H. Wei, Z. X. Wang, X. R. Tian, M. Käll, and H. X. Xu, Nat. Commun. 2, 387 (2011).
[CrossRef]

Opt. Lett.

Phys. Rev. B

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

R. Warmbier, G. S. Manyali, and A. Quandt, Phys. Rev. B 85, 085442 (2012).
[CrossRef]

Phys. Rev. Lett.

S. P. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. X. Xu, Phys. Rev. Lett. 107, 096801 (2011).
[CrossRef]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Science

E. Ozbay, Science 311, 189 (2006).
[CrossRef]

Other

W. Kiefer and S. Schlücker, Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications (Wiley, 2013).

The detailed description of the solution process will be published elsewhere.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Metallic nanowire with radius R is embedded into a uniaxial anisotropic dielectric. Metallic nanowire structure is demonstrated in Cartesian (x,y,z) and cylindrical (ρ,θ,z) coordinate systems.

Fig. 2.
Fig. 2.

Propagation constants of plasmon modes as a function of the refractive index anisotropy deo: (a) real and (b) imaginary parts of the effective refractive index for that of positive uniaxial medium; (c) real and (d) imaginary parts of the effective refractive index for that of negative uniaxial medium. The radius of Ag nanowire is 300 nm, and the wavelength is set as 632.8 nm.

Fig. 3.
Fig. 3.

(a) Longitudinal electric field distributions of the H0 mode at different deo, the arrows indicate the electric field vectors. (b) Longitudinal magnetic field distributions of the H0 mode at different deo.

Fig. 4.
Fig. 4.

Longitudinal electric field distributions of plasmon modes at different deo: (a) H1c mode, (b) H1s mode, and (c) H2s mode.

Fig. 5.
Fig. 5.

(a) Real and (b) imaginary parts of the propagation constants of plasmon modes as a function of the radius of nanowire at deo=0.16. The wavelength is 632.8 nm.

Fig. 6.
Fig. 6.

Dispersion diagram of plasmon modes in the Ag nanowire with radius R=100nm. The refractive index anisotropy deo is set to 0.16.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε=(ne2000no2000no2).
2ExIIx2+no2ne22ExIIy2+no2ne2(k02ne2β2)ExII=0,
2EyIIx2+2EyIIy2+(k02no2β2)EyII=no2ne2no22ExIIxy.
2ExIIx2+2ExIIy2+no2ne2(k02ne2β2)ExII=0.
deo=(neno)/nrm,

Metrics