Abstract

We investigate the tuning behavior of a novel type of single-frequency optical synthesizers by phase comparison of the output signals of two identical devices. We achieve phase-stable and cycle-slip free frequency tuning over 28.1 GHz with a maximum zero-to-peak phase deviation of 62 mrad. In contrast to previous implementations of single-frequency optical synthesizers, no comb line order switching is needed when tuned over more than one comb line spacing range of the employed frequency comb.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Nat. Photonics 3, 529 (2009).
    [CrossRef]
  2. T. Yasui, H. Takahashi, K. Kawamoto, Y. Iwamoto, K. Arai, T. Araki, H. Inaba, and K. Minoshima, Opt. Express 19, 4428 (2011).
    [CrossRef]
  3. W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, Biomed. Opt. Express 3, 2647 (2012).
    [CrossRef]
  4. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
    [CrossRef]
  5. J. Jost, J. Hall, and J. Ye, Opt. Express 10, 515 (2002).
    [CrossRef]
  6. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, Y. Bitou, A. Onae, and H. Matsumoto, Opt. Lett. 30, 2323 (2005).
    [CrossRef]
  7. V. Ahtee, M. Merimaa, and K. Nyholm, Opt. Express 17, 4890 (2009).
    [CrossRef]
  8. E. Benkler, F. Rohde, and H. R. Telle, Opt. Express 21, 5793 (2013).
    [CrossRef]
  9. F. Rohde, E. Benkler, and H. R. Telle, Opt. Lett. 38, 103 (2013).
    [CrossRef]
  10. R. Kohlhaas, T. Vanderbruggen, S. Bernon, A. Bertoldi, A. Landragin, and P. Bouyer, Opt. Lett. 37, 1005 (2012).
    [CrossRef]
  11. M. Servin and R. Rodriguez-Vera, J. Mod. Opt. 40, 2087 (1993).
    [CrossRef]

2013 (2)

2012 (2)

2011 (1)

2009 (2)

V. Ahtee, M. Merimaa, and K. Nyholm, Opt. Express 17, 4890 (2009).
[CrossRef]

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Nat. Photonics 3, 529 (2009).
[CrossRef]

2005 (1)

2002 (1)

2000 (1)

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef]

1993 (1)

M. Servin and R. Rodriguez-Vera, J. Mod. Opt. 40, 2087 (1993).
[CrossRef]

Adler, D. C.

Ahtee, V.

Arai, K.

Araki, T.

Arcizet, O.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Nat. Photonics 3, 529 (2009).
[CrossRef]

Benkler, E.

Bernon, S.

Bertoldi, A.

Bitou, Y.

Bouyer, P.

Del’Haye, P.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Nat. Photonics 3, 529 (2009).
[CrossRef]

Eigenwillig, C. M.

Gorodetsky, M. L.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Nat. Photonics 3, 529 (2009).
[CrossRef]

Hall, J.

Hänsch, T. W.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef]

Holzwarth, R.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Nat. Photonics 3, 529 (2009).
[CrossRef]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef]

Hong, F.-L.

Huber, R.

Inaba, H.

Iwamoto, Y.

Jost, J.

Karpf, S.

Kawamoto, K.

Kippenberg, T. J.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Nat. Photonics 3, 529 (2009).
[CrossRef]

Klein, T.

Knight, J. C.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef]

Kohlhaas, R.

Landragin, A.

Matsumoto, H.

Merimaa, M.

Minoshima, K.

Nyholm, K.

Onae, A.

Rodriguez-Vera, R.

M. Servin and R. Rodriguez-Vera, J. Mod. Opt. 40, 2087 (1993).
[CrossRef]

Rohde, F.

Russell, P. S. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef]

Schibli, T. R.

Schmitt, J. M.

Servin, M.

M. Servin and R. Rodriguez-Vera, J. Mod. Opt. 40, 2087 (1993).
[CrossRef]

Takahashi, H.

Telle, H. R.

Trépanier, F.

Udem, T.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef]

Vanderbruggen, T.

Wadsworth, W. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).
[CrossRef]

Wieser, W.

Yasui, T.

Ye, J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Phase command values as a function of pulse number for a parabolic frequency evolution of the frequency comb. Circles, calculated values according to Eq. (1); stars (red), values modulo 2π; arrows, 2π flybacks; solid line, possible phase evolution at EOM. (b) Setup of the experiment consisting of two channels: ChA and ChB. FPGA, field programmable gate array; EOM, electro-optical modulator; BPF, band-pass filter (50 GHz); DL1 and 2, external cavity diode lasers 1 and 2; PD, photodiode; PLL, phase-locked loop; OoL, out-of-loop measurement.

Fig. 2.
Fig. 2.

Top: relative phase between DL1 and DL2 during a sinusoidal frequency sweep over 500 comb lines (28.1 GHz). Inset: (color online) power spectral density SE of the beat note between DL1 and DL2 during the same sweep (blue). Sidebands at 50 and 100 Hz are caused by power line noise. FFT-filter function is used to calculate SE (red). Bottom: result of the out-of-loop frequency measurement of DL1 during the sweep. The coarse frequency measurement has an uncertainty of ±100MHz.

Fig. 3.
Fig. 3.

(a) Relative phase between DL1 and DL2 during an experiment where a cycle slip has been provoked in the PLL of DL1. (b) Average of 100 consecutive sweeps of the relative phase between DL1 and DL2 when DL1 is swept over a critical frequency (unshifted comb line).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

νm(t)=νm,0+12πΔϕm(t)ΔT.

Metrics