Abstract

We measured the polarization-resolved angular elastic scattering intensity distribution of aggregates composed of primary particles with different shapes and packing densities in the near-backward directions (155°–180°). Specifically, we compare aggregates composed of spherical polystyrene latex spheres, cylinder-like Bacillus subtilis particles, and Arizona road dust, as well as tryptophan particles. We observe clearly differentiable polarization aspect ratios and find that the negative polarization dip is more pronounced in more densely packed aggregates or particles. This work indicates that the polarization aspect ratio in the near-backward direction may be used as a fingerprint to discriminate between aggregates with the same size and overall shape by differences in their constituent particles.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription