Abstract

We measured the polarization-resolved angular elastic scattering intensity distribution of aggregates composed of primary particles with different shapes and packing densities in the near-backward directions (155°–180°). Specifically, we compare aggregates composed of spherical polystyrene latex spheres, cylinder-like Bacillus subtilis particles, and Arizona road dust, as well as tryptophan particles. We observe clearly differentiable polarization aspect ratios and find that the negative polarization dip is more pronounced in more densely packed aggregates or particles. This work indicates that the polarization aspect ratio in the near-backward direction may be used as a fingerprint to discriminate between aggregates with the same size and overall shape by differences in their constituent particles.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).
  2. R. K. Chang, G. E. Fernandes, Y.-L. Pan, K. Aptowicz, and R. G. Pinnick, in Progress in Electromagnetics Research Symposium (2007), pp. 622–625.
  3. P. J. Wyatt, Nature 221, 1257 (1969).
    [CrossRef]
  4. M. Bartholdi, G. C. Salzman, R. D. Hiebert, and M. Kerker, Appl. Opt. 19, 1573 (1980).
    [CrossRef]
  5. P. H. Kaye, K. Alexander-Buckley, E. Hirst, and S. Saunders, J. Geophys. Res. 101, 19215 (1996).
    [CrossRef]
  6. M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey, Rev. Sci. Instrum. 68, 2287 (1997).
    [CrossRef]
  7. P. H. Kaye, Meas. Sci. Technol. 9, 141 (1998).
    [CrossRef]
  8. O. V. Kalashnikova, R. Kahn, I. N. Sokolik, and L. Wen-Hao, J. Geophys. Res. 110, D18S14 (2005).
    [CrossRef]
  9. E. Zubko, Y. Shkuratov, M. Hart, J. Eversole, and G. Videen, Opt. Lett. 28, 1504 (2003).
    [CrossRef]
  10. P. Raman, K. A. Fuller, and D. A. Gregory, Opt. Eng. 52, 074106 (2013).
    [CrossRef]
  11. J. Tyynelä, E. Zubko, K. Muinonen, and G. Videen, Appl. Opt. 49, 5284 (2010).
    [CrossRef]
  12. Y.-L. Pan, M. J. Berg, S. S.-M. Zhang, H. Noh, H. Cao, R. K. Chang, and G. Videen, Cytom. A 79, 284 (2011).
    [CrossRef]
  13. S. Holler, J. Auger, B. Stout, Y.-L. Pan, J. R. Bottiger, R. K. Chang, and G. Videen, Appl. Opt. 39, 6873 (2000).
    [CrossRef]
  14. J. R. Bottiger, P. J. Deluca, E. W. Stuebing, and D. R. Vanreenen, J. Aerosol Sci. 29, S965 (1998).
    [CrossRef]
  15. Y.-L. Pan, S. C. Hill, and M. Coleman, Opt. Express 20, 5325 (2012).
    [CrossRef]
  16. Y.-L. Pan, H. Huang, and R. K. Chang, J. Quant. Spectrosc. Radiat. Transfer 113, 2213 (2012).
    [CrossRef]
  17. X. Cao, G. Roy, and R. Bernier, Opt. Eng. 49, 116201 (2010).
    [CrossRef]

2013 (1)

P. Raman, K. A. Fuller, and D. A. Gregory, Opt. Eng. 52, 074106 (2013).
[CrossRef]

2012 (2)

Y.-L. Pan, H. Huang, and R. K. Chang, J. Quant. Spectrosc. Radiat. Transfer 113, 2213 (2012).
[CrossRef]

Y.-L. Pan, S. C. Hill, and M. Coleman, Opt. Express 20, 5325 (2012).
[CrossRef]

2011 (1)

Y.-L. Pan, M. J. Berg, S. S.-M. Zhang, H. Noh, H. Cao, R. K. Chang, and G. Videen, Cytom. A 79, 284 (2011).
[CrossRef]

2010 (2)

2005 (1)

O. V. Kalashnikova, R. Kahn, I. N. Sokolik, and L. Wen-Hao, J. Geophys. Res. 110, D18S14 (2005).
[CrossRef]

2003 (1)

2000 (1)

1998 (2)

P. H. Kaye, Meas. Sci. Technol. 9, 141 (1998).
[CrossRef]

J. R. Bottiger, P. J. Deluca, E. W. Stuebing, and D. R. Vanreenen, J. Aerosol Sci. 29, S965 (1998).
[CrossRef]

1997 (1)

M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey, Rev. Sci. Instrum. 68, 2287 (1997).
[CrossRef]

1996 (1)

P. H. Kaye, K. Alexander-Buckley, E. Hirst, and S. Saunders, J. Geophys. Res. 101, 19215 (1996).
[CrossRef]

1980 (1)

1969 (1)

P. J. Wyatt, Nature 221, 1257 (1969).
[CrossRef]

Alexander-Buckley, K.

P. H. Kaye, K. Alexander-Buckley, E. Hirst, and S. Saunders, J. Geophys. Res. 101, 19215 (1996).
[CrossRef]

Aptowicz, K.

R. K. Chang, G. E. Fernandes, Y.-L. Pan, K. Aptowicz, and R. G. Pinnick, in Progress in Electromagnetics Research Symposium (2007), pp. 622–625.

Auger, J.

Barnes, M. D.

M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey, Rev. Sci. Instrum. 68, 2287 (1997).
[CrossRef]

Bartholdi, M.

Berg, M. J.

Y.-L. Pan, M. J. Berg, S. S.-M. Zhang, H. Noh, H. Cao, R. K. Chang, and G. Videen, Cytom. A 79, 284 (2011).
[CrossRef]

Bernier, R.

X. Cao, G. Roy, and R. Bernier, Opt. Eng. 49, 116201 (2010).
[CrossRef]

Bottiger, J. R.

S. Holler, J. Auger, B. Stout, Y.-L. Pan, J. R. Bottiger, R. K. Chang, and G. Videen, Appl. Opt. 39, 6873 (2000).
[CrossRef]

J. R. Bottiger, P. J. Deluca, E. W. Stuebing, and D. R. Vanreenen, J. Aerosol Sci. 29, S965 (1998).
[CrossRef]

Cao, H.

Y.-L. Pan, M. J. Berg, S. S.-M. Zhang, H. Noh, H. Cao, R. K. Chang, and G. Videen, Cytom. A 79, 284 (2011).
[CrossRef]

Cao, X.

X. Cao, G. Roy, and R. Bernier, Opt. Eng. 49, 116201 (2010).
[CrossRef]

Chang, R. K.

Y.-L. Pan, H. Huang, and R. K. Chang, J. Quant. Spectrosc. Radiat. Transfer 113, 2213 (2012).
[CrossRef]

Y.-L. Pan, M. J. Berg, S. S.-M. Zhang, H. Noh, H. Cao, R. K. Chang, and G. Videen, Cytom. A 79, 284 (2011).
[CrossRef]

S. Holler, J. Auger, B. Stout, Y.-L. Pan, J. R. Bottiger, R. K. Chang, and G. Videen, Appl. Opt. 39, 6873 (2000).
[CrossRef]

R. K. Chang, G. E. Fernandes, Y.-L. Pan, K. Aptowicz, and R. G. Pinnick, in Progress in Electromagnetics Research Symposium (2007), pp. 622–625.

Coleman, M.

Deluca, P. J.

J. R. Bottiger, P. J. Deluca, E. W. Stuebing, and D. R. Vanreenen, J. Aerosol Sci. 29, S965 (1998).
[CrossRef]

Eversole, J.

Fernandes, G. E.

R. K. Chang, G. E. Fernandes, Y.-L. Pan, K. Aptowicz, and R. G. Pinnick, in Progress in Electromagnetics Research Symposium (2007), pp. 622–625.

Fuller, K. A.

P. Raman, K. A. Fuller, and D. A. Gregory, Opt. Eng. 52, 074106 (2013).
[CrossRef]

Gregory, D. A.

P. Raman, K. A. Fuller, and D. A. Gregory, Opt. Eng. 52, 074106 (2013).
[CrossRef]

Hart, M.

Hiebert, R. D.

Hill, S. C.

Hirst, E.

P. H. Kaye, K. Alexander-Buckley, E. Hirst, and S. Saunders, J. Geophys. Res. 101, 19215 (1996).
[CrossRef]

Holler, S.

Huang, H.

Y.-L. Pan, H. Huang, and R. K. Chang, J. Quant. Spectrosc. Radiat. Transfer 113, 2213 (2012).
[CrossRef]

Kahn, R.

O. V. Kalashnikova, R. Kahn, I. N. Sokolik, and L. Wen-Hao, J. Geophys. Res. 110, D18S14 (2005).
[CrossRef]

Kalashnikova, O. V.

O. V. Kalashnikova, R. Kahn, I. N. Sokolik, and L. Wen-Hao, J. Geophys. Res. 110, D18S14 (2005).
[CrossRef]

Kaye, P. H.

P. H. Kaye, Meas. Sci. Technol. 9, 141 (1998).
[CrossRef]

P. H. Kaye, K. Alexander-Buckley, E. Hirst, and S. Saunders, J. Geophys. Res. 101, 19215 (1996).
[CrossRef]

Kerker, M.

Lacis, A. A.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).

Lermer, N.

M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey, Rev. Sci. Instrum. 68, 2287 (1997).
[CrossRef]

Mishchenko, M. I.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).

Muinonen, K.

Noh, H.

Y.-L. Pan, M. J. Berg, S. S.-M. Zhang, H. Noh, H. Cao, R. K. Chang, and G. Videen, Cytom. A 79, 284 (2011).
[CrossRef]

Pan, Y.-L.

Y.-L. Pan, H. Huang, and R. K. Chang, J. Quant. Spectrosc. Radiat. Transfer 113, 2213 (2012).
[CrossRef]

Y.-L. Pan, S. C. Hill, and M. Coleman, Opt. Express 20, 5325 (2012).
[CrossRef]

Y.-L. Pan, M. J. Berg, S. S.-M. Zhang, H. Noh, H. Cao, R. K. Chang, and G. Videen, Cytom. A 79, 284 (2011).
[CrossRef]

S. Holler, J. Auger, B. Stout, Y.-L. Pan, J. R. Bottiger, R. K. Chang, and G. Videen, Appl. Opt. 39, 6873 (2000).
[CrossRef]

R. K. Chang, G. E. Fernandes, Y.-L. Pan, K. Aptowicz, and R. G. Pinnick, in Progress in Electromagnetics Research Symposium (2007), pp. 622–625.

Pinnick, R. G.

R. K. Chang, G. E. Fernandes, Y.-L. Pan, K. Aptowicz, and R. G. Pinnick, in Progress in Electromagnetics Research Symposium (2007), pp. 622–625.

Raman, P.

P. Raman, K. A. Fuller, and D. A. Gregory, Opt. Eng. 52, 074106 (2013).
[CrossRef]

Ramsey, J. M.

M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey, Rev. Sci. Instrum. 68, 2287 (1997).
[CrossRef]

Roy, G.

X. Cao, G. Roy, and R. Bernier, Opt. Eng. 49, 116201 (2010).
[CrossRef]

Salzman, G. C.

Saunders, S.

P. H. Kaye, K. Alexander-Buckley, E. Hirst, and S. Saunders, J. Geophys. Res. 101, 19215 (1996).
[CrossRef]

Shkuratov, Y.

Sokolik, I. N.

O. V. Kalashnikova, R. Kahn, I. N. Sokolik, and L. Wen-Hao, J. Geophys. Res. 110, D18S14 (2005).
[CrossRef]

Stout, B.

Stuebing, E. W.

J. R. Bottiger, P. J. Deluca, E. W. Stuebing, and D. R. Vanreenen, J. Aerosol Sci. 29, S965 (1998).
[CrossRef]

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).

Tyynelä, J.

Vanreenen, D. R.

J. R. Bottiger, P. J. Deluca, E. W. Stuebing, and D. R. Vanreenen, J. Aerosol Sci. 29, S965 (1998).
[CrossRef]

Videen, G.

Wen-Hao, L.

O. V. Kalashnikova, R. Kahn, I. N. Sokolik, and L. Wen-Hao, J. Geophys. Res. 110, D18S14 (2005).
[CrossRef]

Whitten, W. B.

M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey, Rev. Sci. Instrum. 68, 2287 (1997).
[CrossRef]

Wyatt, P. J.

P. J. Wyatt, Nature 221, 1257 (1969).
[CrossRef]

Zhang, S. S.-M.

Y.-L. Pan, M. J. Berg, S. S.-M. Zhang, H. Noh, H. Cao, R. K. Chang, and G. Videen, Cytom. A 79, 284 (2011).
[CrossRef]

Zubko, E.

Appl. Opt. (3)

Cytom. A (1)

Y.-L. Pan, M. J. Berg, S. S.-M. Zhang, H. Noh, H. Cao, R. K. Chang, and G. Videen, Cytom. A 79, 284 (2011).
[CrossRef]

J. Aerosol Sci. (1)

J. R. Bottiger, P. J. Deluca, E. W. Stuebing, and D. R. Vanreenen, J. Aerosol Sci. 29, S965 (1998).
[CrossRef]

J. Geophys. Res. (2)

P. H. Kaye, K. Alexander-Buckley, E. Hirst, and S. Saunders, J. Geophys. Res. 101, 19215 (1996).
[CrossRef]

O. V. Kalashnikova, R. Kahn, I. N. Sokolik, and L. Wen-Hao, J. Geophys. Res. 110, D18S14 (2005).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

Y.-L. Pan, H. Huang, and R. K. Chang, J. Quant. Spectrosc. Radiat. Transfer 113, 2213 (2012).
[CrossRef]

Meas. Sci. Technol. (1)

P. H. Kaye, Meas. Sci. Technol. 9, 141 (1998).
[CrossRef]

Nature (1)

P. J. Wyatt, Nature 221, 1257 (1969).
[CrossRef]

Opt. Eng. (2)

P. Raman, K. A. Fuller, and D. A. Gregory, Opt. Eng. 52, 074106 (2013).
[CrossRef]

X. Cao, G. Roy, and R. Bernier, Opt. Eng. 49, 116201 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey, Rev. Sci. Instrum. 68, 2287 (1997).
[CrossRef]

Other (2)

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).

R. K. Chang, G. E. Fernandes, Y.-L. Pan, K. Aptowicz, and R. G. Pinnick, in Progress in Electromagnetics Research Symposium (2007), pp. 622–625.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of the experimental apparatus. When a particle passes through the focal position where the 650 and 680 nm diode lasers cross, scattered light reaches the PMTs, which trigger the Nd:YAG laser that illuminates the particle and the ICCD camera that records the scattering pattern. Two polarizing beam splitters (PBSs) spatially separated the two polarization components on the ICCD. (b) Typical image recorded on the ICCD showing the backscattering pattern for the two polarizations from an aggregate composed of PSL spheres. The x axis corresponds to scattering in the polar (θ) direction and the y axis to scattering in the azimuthal (φ) direction.

Fig. 2.
Fig. 2.

Scattering intensity distribution for (a) parallel and (b) perpendicular polarizations from 3 μm diameter polystyrene spheres. Each row shows the scattering pattern extracted from an individual sphere. The average scattering pattern over 25 particles is plotted in (c) and (d) for the two polarization components along with the calculation by Mie theory. The error bars indicate the standard deviation over the 25 particles. (e) Polarization aspect ratio of the 3 μm PSL spheres.

Fig. 3.
Fig. 3.

Scattering intensity distribution for (a) parallel and (b) perpendicular polarizations from 5 to 6 μm polystyrene aggregates composed of 500 nm diameter spheres. Each aggregate exhibits a different scattering pattern depending on its packing density, orientation, and the positions of the individual spheres in the aggregate. Ensemble averaged scattering intensity distribution for the (c) parallel and (d) perpendicular polarizations from the same PSL aggregates.

Fig. 4.
Fig. 4.

(Left) Typical SEM images of the 5 particles/aggregates showing their distinct morphologies. The particles/aggregates are ordered according to their approximate packing density from top to bottom. The scale bar in each image represents 1 μm. (Right) Polarization aspect ratios for the 5 particles/aggregates, each averaged over 200 measurements. The red dotted lines represent the unprocessed experimental data, and the solid line is a smoothed fit obtained by averaging the experimental data along the polar angle (θ). The error bars indicate the 95% confidence interval after averaging over 200 aggregates. The negative polarization dip is more pronounced in the more densely packed particles/aggregates.

Metrics