Abstract

Using Lorentz reciprocity and power conservation, we prove that the extinction cross section of an arbitrarily shaped scatterer is always the same when illuminated from opposite directions and with the same polarization. For lossless and passive objects, this finding implies identical scattering cross sections for opposite excitations, with relevant implications on cloaking designs and scattering suppression schemes. This scattering symmetry can be broken by introducing absorption into the system, providing a path toward large scattering asymmetries when combined with Fano interference.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Scattering characteristics of simplified cylindrical invisibility cloaks

Min Yan, Zhichao Ruan, and Min Qiu
Opt. Express 15(26) 17772-17782 (2007)

Symmetry theorems on the forward and backward scattering Mueller matrices for light scattering from a nonspherical dielectric scatterer

Chia-Ren Hu, George W. Kattawar, Mark E. Parkin, and Pascal Herb
Appl. Opt. 26(19) 4159-4173 (1987)

Generalized transformation for nonmagnetic invisibility cloak with minimized scattering

Lujun Huang, Daming Zhou, Jian Wang, Zhifeng Li, Xiaoshuang Chen, and Wei Lu
J. Opt. Soc. Am. B 28(4) 922-928 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription