Abstract

We directly measured phase-matching directions of second harmonic, sum, and difference frequency generations in the Langatate La3Ga5.5Ta0.5O14 (LGT) uniaxial crystal. The simultaneous fit of the data enabled us to refine the Sellmeier equations of the ordinary and extraordinary principal refractive indices over the entire transparency range of the crystal, and to calculate the phase-matching curves and efficiencies of LGT for infrared optical parametric generation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Godard, C. R. Phys. 8, 1100 (2007).
    [CrossRef]
  2. O. A. Buzanov, N. S. Kozlova, E. V. Zabelina, A. P. Kozlova, and N. A. Siminel, Russ. Microelectron. 40, 562 (2011).
    [CrossRef]
  3. J. Stade, L. Bohaty, M. Hengst, and R. B. Heimann, Cryst. Res. Technol. 37, 1113 (2002).
    [CrossRef]
  4. H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, Cryst. Res. Technol. 39, 686 (2004).
    [CrossRef]
  5. J. Bohm, E. Chilla, C. Flannery, H.-J. Fröhlich, T. Hauke, R. B. Heimann, M. Hengst, and U. Straube, J. Cryst. Growth 216, 293 (2000).
    [CrossRef]
  6. B. Boulanger and J. Zyss, in International Tables for Crystallography, A. Authier, ed., Vol. D of Physical Properties of Crystals (Kluwer Academic, 2004), pp. 178–219.
  7. B. Boulanger, J. P. Fève, G. Marnier, C. Bonnin, P. Villeval, and J. J. Zondy, J. Opt. Soc. Am. B 14, 1380 (1997).
    [CrossRef]
  8. V. Kemlin, D. Jegouso, J. Debray, E. Boursier, P. Segonds, B. Boulanger, H. Ishizuki, T. Taira, G. Mennerat, J. M. Melkonian, and A. Godard, Opt. Express 21, 28886 (2013).
    [CrossRef]
  9. R. C. Miller, Appl. Phys. Lett. 5, 17 (1964).
    [CrossRef]

2013 (1)

2011 (1)

O. A. Buzanov, N. S. Kozlova, E. V. Zabelina, A. P. Kozlova, and N. A. Siminel, Russ. Microelectron. 40, 562 (2011).
[CrossRef]

2007 (1)

A. Godard, C. R. Phys. 8, 1100 (2007).
[CrossRef]

2004 (1)

H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, Cryst. Res. Technol. 39, 686 (2004).
[CrossRef]

2002 (1)

J. Stade, L. Bohaty, M. Hengst, and R. B. Heimann, Cryst. Res. Technol. 37, 1113 (2002).
[CrossRef]

2000 (1)

J. Bohm, E. Chilla, C. Flannery, H.-J. Fröhlich, T. Hauke, R. B. Heimann, M. Hengst, and U. Straube, J. Cryst. Growth 216, 293 (2000).
[CrossRef]

1997 (1)

1964 (1)

R. C. Miller, Appl. Phys. Lett. 5, 17 (1964).
[CrossRef]

Bohaty, L.

J. Stade, L. Bohaty, M. Hengst, and R. B. Heimann, Cryst. Res. Technol. 37, 1113 (2002).
[CrossRef]

Bohm, J.

J. Bohm, E. Chilla, C. Flannery, H.-J. Fröhlich, T. Hauke, R. B. Heimann, M. Hengst, and U. Straube, J. Cryst. Growth 216, 293 (2000).
[CrossRef]

Bonnin, C.

Boulanger, B.

Boursier, E.

Buzanov, O. A.

O. A. Buzanov, N. S. Kozlova, E. V. Zabelina, A. P. Kozlova, and N. A. Siminel, Russ. Microelectron. 40, 562 (2011).
[CrossRef]

Cheng, X.

H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, Cryst. Res. Technol. 39, 686 (2004).
[CrossRef]

Chilla, E.

J. Bohm, E. Chilla, C. Flannery, H.-J. Fröhlich, T. Hauke, R. B. Heimann, M. Hengst, and U. Straube, J. Cryst. Growth 216, 293 (2000).
[CrossRef]

Debray, J.

Fève, J. P.

Flannery, C.

J. Bohm, E. Chilla, C. Flannery, H.-J. Fröhlich, T. Hauke, R. B. Heimann, M. Hengst, and U. Straube, J. Cryst. Growth 216, 293 (2000).
[CrossRef]

Fröhlich, H.-J.

J. Bohm, E. Chilla, C. Flannery, H.-J. Fröhlich, T. Hauke, R. B. Heimann, M. Hengst, and U. Straube, J. Cryst. Growth 216, 293 (2000).
[CrossRef]

Godard, A.

Hauke, T.

J. Bohm, E. Chilla, C. Flannery, H.-J. Fröhlich, T. Hauke, R. B. Heimann, M. Hengst, and U. Straube, J. Cryst. Growth 216, 293 (2000).
[CrossRef]

Heimann, R. B.

J. Stade, L. Bohaty, M. Hengst, and R. B. Heimann, Cryst. Res. Technol. 37, 1113 (2002).
[CrossRef]

J. Bohm, E. Chilla, C. Flannery, H.-J. Fröhlich, T. Hauke, R. B. Heimann, M. Hengst, and U. Straube, J. Cryst. Growth 216, 293 (2000).
[CrossRef]

Hengst, M.

J. Stade, L. Bohaty, M. Hengst, and R. B. Heimann, Cryst. Res. Technol. 37, 1113 (2002).
[CrossRef]

J. Bohm, E. Chilla, C. Flannery, H.-J. Fröhlich, T. Hauke, R. B. Heimann, M. Hengst, and U. Straube, J. Cryst. Growth 216, 293 (2000).
[CrossRef]

Hu, X.

H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, Cryst. Res. Technol. 39, 686 (2004).
[CrossRef]

Ishizuki, H.

Jegouso, D.

Jiang, M.

H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, Cryst. Res. Technol. 39, 686 (2004).
[CrossRef]

Kemlin, V.

Kong, H.

H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, Cryst. Res. Technol. 39, 686 (2004).
[CrossRef]

Kozlova, A. P.

O. A. Buzanov, N. S. Kozlova, E. V. Zabelina, A. P. Kozlova, and N. A. Siminel, Russ. Microelectron. 40, 562 (2011).
[CrossRef]

Kozlova, N. S.

O. A. Buzanov, N. S. Kozlova, E. V. Zabelina, A. P. Kozlova, and N. A. Siminel, Russ. Microelectron. 40, 562 (2011).
[CrossRef]

Lin, Y.

H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, Cryst. Res. Technol. 39, 686 (2004).
[CrossRef]

Marnier, G.

Melkonian, J. M.

Mennerat, G.

Miller, R. C.

R. C. Miller, Appl. Phys. Lett. 5, 17 (1964).
[CrossRef]

Segonds, P.

Siminel, N. A.

O. A. Buzanov, N. S. Kozlova, E. V. Zabelina, A. P. Kozlova, and N. A. Siminel, Russ. Microelectron. 40, 562 (2011).
[CrossRef]

Stade, J.

J. Stade, L. Bohaty, M. Hengst, and R. B. Heimann, Cryst. Res. Technol. 37, 1113 (2002).
[CrossRef]

Straube, U.

J. Bohm, E. Chilla, C. Flannery, H.-J. Fröhlich, T. Hauke, R. B. Heimann, M. Hengst, and U. Straube, J. Cryst. Growth 216, 293 (2000).
[CrossRef]

Taira, T.

Villeval, P.

Wang, J.

H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, Cryst. Res. Technol. 39, 686 (2004).
[CrossRef]

Xu, X.

H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, Cryst. Res. Technol. 39, 686 (2004).
[CrossRef]

Yin, X.

H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, Cryst. Res. Technol. 39, 686 (2004).
[CrossRef]

Zabelina, E. V.

O. A. Buzanov, N. S. Kozlova, E. V. Zabelina, A. P. Kozlova, and N. A. Siminel, Russ. Microelectron. 40, 562 (2011).
[CrossRef]

Zhang, H.

H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, Cryst. Res. Technol. 39, 686 (2004).
[CrossRef]

Zondy, J. J.

Zyss, J.

B. Boulanger and J. Zyss, in International Tables for Crystallography, A. Authier, ed., Vol. D of Physical Properties of Crystals (Kluwer Academic, 2004), pp. 178–219.

Appl. Phys. Lett. (1)

R. C. Miller, Appl. Phys. Lett. 5, 17 (1964).
[CrossRef]

C. R. Phys. (1)

A. Godard, C. R. Phys. 8, 1100 (2007).
[CrossRef]

Cryst. Res. Technol. (2)

J. Stade, L. Bohaty, M. Hengst, and R. B. Heimann, Cryst. Res. Technol. 37, 1113 (2002).
[CrossRef]

H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, Cryst. Res. Technol. 39, 686 (2004).
[CrossRef]

J. Cryst. Growth (1)

J. Bohm, E. Chilla, C. Flannery, H.-J. Fröhlich, T. Hauke, R. B. Heimann, M. Hengst, and U. Straube, J. Cryst. Growth 216, 293 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Russ. Microelectron. (1)

O. A. Buzanov, N. S. Kozlova, E. V. Zabelina, A. P. Kozlova, and N. A. Siminel, Russ. Microelectron. 40, 562 (2011).
[CrossRef]

Other (1)

B. Boulanger and J. Zyss, in International Tables for Crystallography, A. Authier, ed., Vol. D of Physical Properties of Crystals (Kluwer Academic, 2004), pp. 178–219.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

LGT transmission spectra in polarized light as a function of the wavelength, through a 2.50 mm thick uncoated slab oriented along the x axis. The insert corresponds to a zoom of the ultraviolet edge.

Fig. 2.
Fig. 2.

Type I SHG tuning curve of LGT. λω is plotted as a function of the phase-matching angle θPM; the calculations were done from the Sellmeier equations of [3]. The picture shows the 4.70-mm-diameter LGT sphere stuck on a goniometric head.

Fig. 3.
Fig. 3.

Type I SFG tuning curve of LGT. λ1 and λ3 are plotted as a function of the phase-matching angle θPM; calculations were done from Sellmeier equations of Ref. [3].

Fig. 4.
Fig. 4.

Type II DFG tuning curve of LGT. λ3 and λ1 are plotted as a function of the phase-matching angle θPM; calculations were done from Sellmeier equations of Ref. [3].

Fig. 5.
Fig. 5.

Wavelength ranges over which the ordinary (no) and extraordinary (ne) principal refractive indices were solicited by our type I SHG, I SFG and II DFG sphere measurements (continuous lines) and the prism method of [3] (dotted lines).

Fig. 6.
Fig. 6.

Second harmonic energy as a function of the fundamental wavelength λω at the exit of a 500 μm thick LGT slab oriented at θPM=79° and φPM=90°. Dots correspond to experiments and the continuous line to calculation from our improved Sellmeier equations.

Fig. 7.
Fig. 7.

Calculated type II OPG (λpo,λse,λie) tuning curves in the (y,z) plane of LGT with a pump wavelength λp of 0.750, 0.850, and 0.964 μm. λi and λs are the idler and signal wavelengths, respectively.

Tables (1)

Tables Icon

Table 1. Refined Sellmeier Coefficients Relative to the Ordinary (no) and Extraordinary (ne) Principal Refractive Indices of La3Ga5.5Ta0.5O14

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

nj2(λ)=Aj+Bjλ2CjDjλ2,
FOMLGTFOMKTP=1.3×103·ToKTP(λ2ω2)ToKTP(λω2)TeKTP(λω2)ToLGT(λ2ω1)[TeLGT(λω1)]2λω12λω22=1.5×103,
FOMKTP=(deffKTP)2noKTP(λ2ω2)neKTP(λω2,θPM2)noKTP(λω2)
FOMLGT=(deffLGT)2noLGT(λ2ω1)[neLGT(λω1,θPM1)]2,

Metrics