Abstract

Thermal lens (TL) is a key effect in laser engineering and photothermal spectroscopy. The amplitude of the TL signal or its dioptric power is proportional to the optical path difference (OPD) between the center and border of the beam, which is proportional to the heat power (Ph). Due to thermally induced mechanical stress and bulging of end faces of the sample, OPD depends critically on the geometry of the sample. In this investigation, TL measurements were performed as a function of the sample length keeping the same Ph. It is experimentally demonstrated that for materials with positive n/T OPD increases typically 30 to 50% with the decrease of sample length (from long rod to thin-disk geometry). For materials with negative n/T, this variation is much larger due to the cancelation of the different contributions to OPD with opposite signs. Furthermore, the experimental investigation presented here validates a recently proposed unified theoretical description of the TL effect.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription