Abstract

It is accepted so far that the formation of photonic nanojets requires the use of large dielectric spheres (several wavelengths in diameter). Here we show both numerically and experimentally that similar effects can be obtained with properly engineered sub-wavelength core-shell colloids. The design of the spheres is strongly inspired by a far-field approach for the generation of Bessel beams.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lecler, Y. Takakura, and P. Meyrueis, Opt. Lett. 30, 2641 (2005).
    [CrossRef]
  2. A. V. Itagi and W. A. Challener, J. Opt. Soc. Am. A 22, 2847 (2005).
    [CrossRef]
  3. D. Ju, H. Pei, Y. Jiang, and X. Sun, Appl. Phys. Lett. 102, 171109 (2013).
    [CrossRef]
  4. Z. Wang, W. Guo, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
    [CrossRef]
  5. Y. Duan, G. Barbastathis, and B. Zhang, Opt. Lett. 38, 2988 (2013).
    [CrossRef]
  6. T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, Nano Lett. 8, 853 (2008).
    [CrossRef]
  7. D. Gerard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, Opt. Express 16, 15297 (2008).
    [CrossRef]
  8. X. Li, Z. Chen, A. Taflove, and V. Backman, Opt. Express 13, 526 (2005).
    [CrossRef]
  9. E. McLeod and C. B. Arnold, Nat. Nanotechnol. 3, 413 (2008).
    [CrossRef]
  10. D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, Nanotechnology 23, 485305 (2012).
    [CrossRef]
  11. G. Mie, Ann. Phys. 330, 377 (1908).
    [CrossRef]
  12. A. L. Aden and M. Kerker, J. Appl. Phys. 22, 1242 (1951).
    [CrossRef]
  13. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite- Difference Time-Domain Method (Artech House, 2005).
  14. D. Grojo, L. Charmasson, A. Pereira, M. Sentis, P. Delaporte, and J. Nanosci, Nanotechnology 11, 9129 (2011).
  15. M. Vasnetsov, V. Pas’ko, A. Khoroshun, V. Slyusar, and M. Soskin, Opt. Lett. 32, 1830 (2007).
    [CrossRef]
  16. M. S. Kim, T. Scharf, C. Etrich, C. Rockstuhl, and H. P. Herzig, Opt. Lett. 37, 305 (2012).
    [CrossRef]
  17. Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, J. Opt. Soc. Am. B 28, 1825 (2011).
    [CrossRef]
  18. C.-Y. Liu, Phys. Lett. A 376, 1856 (2012).
    [CrossRef]
  19. R. M. Herman and T. A. Wiggins, J. Opt. Soc. Am. A 8, 932 (1991).
    [CrossRef]
  20. S. B. Purnapatra, S. Bera, and P. P. Mondal, Sci. Rep. 2, 692 (2012).
    [CrossRef]
  21. E. Giani, K. Sparnacci, M. Laus, G. Palamone, V. Kapeliouchko, and V. Arcella, Macromolecules 36, 4360 (2003).
    [CrossRef]
  22. J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
    [CrossRef]
  23. A. Devilez, B. Stout, and N. Bonod, Proc. SPIE 7786, 77860G (2010).
    [CrossRef]
  24. M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, Opt. Express 19, 10206 (2011).
    [CrossRef]
  25. J. Martin, J. Proust, D. Gerard, J.-L. Bijeon, and J. Plain, Opt. Lett. 37, 1274 (2012).
    [CrossRef]
  26. V. V. Kotlyar, S. S. Stafeev, L. O’Faolain, and V. A. Soifer, Opt. Lett. 36, 3100 (2011).
    [CrossRef]
  27. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, Nano Lett. 12, 4932 (2012).
    [CrossRef]
  28. T. Wen, R. A. Booth, and S. A. Majetich, Nano Lett. 12, 5873 (2012).
    [CrossRef]
  29. A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, Small 4, 572 (2008).
    [CrossRef]

2013 (2)

D. Ju, H. Pei, Y. Jiang, and X. Sun, Appl. Phys. Lett. 102, 171109 (2013).
[CrossRef]

Y. Duan, G. Barbastathis, and B. Zhang, Opt. Lett. 38, 2988 (2013).
[CrossRef]

2012 (7)

M. S. Kim, T. Scharf, C. Etrich, C. Rockstuhl, and H. P. Herzig, Opt. Lett. 37, 305 (2012).
[CrossRef]

J. Martin, J. Proust, D. Gerard, J.-L. Bijeon, and J. Plain, Opt. Lett. 37, 1274 (2012).
[CrossRef]

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, Nanotechnology 23, 485305 (2012).
[CrossRef]

S. B. Purnapatra, S. Bera, and P. P. Mondal, Sci. Rep. 2, 692 (2012).
[CrossRef]

C.-Y. Liu, Phys. Lett. A 376, 1856 (2012).
[CrossRef]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, Nano Lett. 12, 4932 (2012).
[CrossRef]

T. Wen, R. A. Booth, and S. A. Majetich, Nano Lett. 12, 5873 (2012).
[CrossRef]

2011 (5)

D. Grojo, L. Charmasson, A. Pereira, M. Sentis, P. Delaporte, and J. Nanosci, Nanotechnology 11, 9129 (2011).

Z. Wang, W. Guo, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, Opt. Express 19, 10206 (2011).
[CrossRef]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, J. Opt. Soc. Am. B 28, 1825 (2011).
[CrossRef]

V. V. Kotlyar, S. S. Stafeev, L. O’Faolain, and V. A. Soifer, Opt. Lett. 36, 3100 (2011).
[CrossRef]

2010 (1)

A. Devilez, B. Stout, and N. Bonod, Proc. SPIE 7786, 77860G (2010).
[CrossRef]

2008 (4)

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, Small 4, 572 (2008).
[CrossRef]

E. McLeod and C. B. Arnold, Nat. Nanotechnol. 3, 413 (2008).
[CrossRef]

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, Nano Lett. 8, 853 (2008).
[CrossRef]

D. Gerard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, Opt. Express 16, 15297 (2008).
[CrossRef]

2007 (1)

2005 (3)

2003 (1)

E. Giani, K. Sparnacci, M. Laus, G. Palamone, V. Kapeliouchko, and V. Arcella, Macromolecules 36, 4360 (2003).
[CrossRef]

1991 (1)

1987 (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

1951 (1)

A. L. Aden and M. Kerker, J. Appl. Phys. 22, 1242 (1951).
[CrossRef]

1908 (1)

G. Mie, Ann. Phys. 330, 377 (1908).
[CrossRef]

Aden, A. L.

A. L. Aden and M. Kerker, J. Appl. Phys. 22, 1242 (1951).
[CrossRef]

Aieta, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, Nano Lett. 12, 4932 (2012).
[CrossRef]

Arcella, V.

E. Giani, K. Sparnacci, M. Laus, G. Palamone, V. Kapeliouchko, and V. Arcella, Macromolecules 36, 4360 (2003).
[CrossRef]

Arnold, C. B.

E. McLeod and C. B. Arnold, Nat. Nanotechnol. 3, 413 (2008).
[CrossRef]

Backman, V.

Barbastathis, G.

Bera, S.

S. B. Purnapatra, S. Bera, and P. P. Mondal, Sci. Rep. 2, 692 (2012).
[CrossRef]

Bijeon, J.-L.

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, Nano Lett. 12, 4932 (2012).
[CrossRef]

Boarino, L.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, Nanotechnology 23, 485305 (2012).
[CrossRef]

Bonod, N.

Booth, R. A.

T. Wen, R. A. Booth, and S. A. Majetich, Nano Lett. 12, 5873 (2012).
[CrossRef]

Capasso, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, Nano Lett. 12, 4932 (2012).
[CrossRef]

Chaker, M.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, Small 4, 572 (2008).
[CrossRef]

Challener, W. A.

Charmasson, L.

D. Grojo, L. Charmasson, A. Pereira, M. Sentis, P. Delaporte, and J. Nanosci, Nanotechnology 11, 9129 (2011).

Chen, Z.

Z. Wang, W. Guo, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

X. Li, Z. Chen, A. Taflove, and V. Backman, Opt. Express 13, 526 (2005).
[CrossRef]

De Leo, N.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, Nanotechnology 23, 485305 (2012).
[CrossRef]

Delaporte, P.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, Nanotechnology 23, 485305 (2012).
[CrossRef]

D. Grojo, L. Charmasson, A. Pereira, M. Sentis, P. Delaporte, and J. Nanosci, Nanotechnology 11, 9129 (2011).

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, Small 4, 572 (2008).
[CrossRef]

Devilez, A.

Duan, Y.

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

Etrich, C.

Gaburro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, Nano Lett. 12, 4932 (2012).
[CrossRef]

Gachet, D.

Geints, Y. E.

Genevet, P.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, Nano Lett. 12, 4932 (2012).
[CrossRef]

Gerard, D.

Giani, E.

E. Giani, K. Sparnacci, M. Laus, G. Palamone, V. Kapeliouchko, and V. Arcella, Macromolecules 36, 4360 (2003).
[CrossRef]

Grojo, D.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, Nanotechnology 23, 485305 (2012).
[CrossRef]

D. Grojo, L. Charmasson, A. Pereira, M. Sentis, P. Delaporte, and J. Nanosci, Nanotechnology 11, 9129 (2011).

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, Small 4, 572 (2008).
[CrossRef]

Guay, D.

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, Small 4, 572 (2008).
[CrossRef]

Guo, W.

Z. Wang, W. Guo, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite- Difference Time-Domain Method (Artech House, 2005).

Herman, R. M.

Herzig, H. P.

Hong, M.

Z. Wang, W. Guo, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Itagi, A. V.

Jiang, Y.

D. Ju, H. Pei, Y. Jiang, and X. Sun, Appl. Phys. Lett. 102, 171109 (2013).
[CrossRef]

Ju, D.

D. Ju, H. Pei, Y. Jiang, and X. Sun, Appl. Phys. Lett. 102, 171109 (2013).
[CrossRef]

Kapeliouchko, V.

E. Giani, K. Sparnacci, M. Laus, G. Palamone, V. Kapeliouchko, and V. Arcella, Macromolecules 36, 4360 (2003).
[CrossRef]

Kats, M. A.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, Nano Lett. 12, 4932 (2012).
[CrossRef]

Kerker, M.

A. L. Aden and M. Kerker, J. Appl. Phys. 22, 1242 (1951).
[CrossRef]

Khan, A.

Z. Wang, W. Guo, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Khoroshun, A.

Kim, M. S.

Kim, M.-S.

Kotlyar, V. V.

Laus, M.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, Nanotechnology 23, 485305 (2012).
[CrossRef]

E. Giani, K. Sparnacci, M. Laus, G. Palamone, V. Kapeliouchko, and V. Arcella, Macromolecules 36, 4360 (2003).
[CrossRef]

Lecler, S.

Li, X.

Liu, C.-Y.

C.-Y. Liu, Phys. Lett. A 376, 1856 (2012).
[CrossRef]

Liu, Z.

Z. Wang, W. Guo, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Luk’yanchuk, B.

Z. Wang, W. Guo, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Majetich, S. A.

T. Wen, R. A. Booth, and S. A. Majetich, Nano Lett. 12, 5873 (2012).
[CrossRef]

Martin, J.

McLeod, E.

E. McLeod and C. B. Arnold, Nat. Nanotechnol. 3, 413 (2008).
[CrossRef]

Meyrueis, P.

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

Mie, G.

G. Mie, Ann. Phys. 330, 377 (1908).
[CrossRef]

Mitsui, T.

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, Nano Lett. 8, 853 (2008).
[CrossRef]

Mondal, P. P.

S. B. Purnapatra, S. Bera, and P. P. Mondal, Sci. Rep. 2, 692 (2012).
[CrossRef]

Mühlig, S.

Nanosci, J.

D. Grojo, L. Charmasson, A. Pereira, M. Sentis, P. Delaporte, and J. Nanosci, Nanotechnology 11, 9129 (2011).

O’Faolain, L.

Oikawa, H.

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, Nano Lett. 8, 853 (2008).
[CrossRef]

Onodera, T.

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, Nano Lett. 8, 853 (2008).
[CrossRef]

Palamone, G.

E. Giani, K. Sparnacci, M. Laus, G. Palamone, V. Kapeliouchko, and V. Arcella, Macromolecules 36, 4360 (2003).
[CrossRef]

Panina, E. K.

Panzarasa, G.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, Nanotechnology 23, 485305 (2012).
[CrossRef]

Pas’ko, V.

Pei, H.

D. Ju, H. Pei, Y. Jiang, and X. Sun, Appl. Phys. Lett. 102, 171109 (2013).
[CrossRef]

Pereira, A.

D. Grojo, L. Charmasson, A. Pereira, M. Sentis, P. Delaporte, and J. Nanosci, Nanotechnology 11, 9129 (2011).

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, Small 4, 572 (2008).
[CrossRef]

Plain, J.

Popov, E.

Proust, J.

Purnapatra, S. B.

S. B. Purnapatra, S. Bera, and P. P. Mondal, Sci. Rep. 2, 692 (2012).
[CrossRef]

Rigneault, H.

Rocci, R.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, Nanotechnology 23, 485305 (2012).
[CrossRef]

Rockstuhl, C.

Scharf, T.

Sentis, M.

D. Grojo, L. Charmasson, A. Pereira, M. Sentis, P. Delaporte, and J. Nanosci, Nanotechnology 11, 9129 (2011).

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, Small 4, 572 (2008).
[CrossRef]

Slyusar, V.

Soifer, V. A.

Soskin, M.

Sparnacci, K.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, Nanotechnology 23, 485305 (2012).
[CrossRef]

E. Giani, K. Sparnacci, M. Laus, G. Palamone, V. Kapeliouchko, and V. Arcella, Macromolecules 36, 4360 (2003).
[CrossRef]

Stafeev, S. S.

Stout, B.

Sun, X.

D. Ju, H. Pei, Y. Jiang, and X. Sun, Appl. Phys. Lett. 102, 171109 (2013).
[CrossRef]

Taflove, A.

X. Li, Z. Chen, A. Taflove, and V. Backman, Opt. Express 13, 526 (2005).
[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite- Difference Time-Domain Method (Artech House, 2005).

Takakura, Y.

Takaya, Y.

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, Nano Lett. 8, 853 (2008).
[CrossRef]

Vasnetsov, M.

Wakayama, Y.

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, Nano Lett. 8, 853 (2008).
[CrossRef]

Wang, Z.

Z. Wang, W. Guo, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Wen, T.

T. Wen, R. A. Booth, and S. A. Majetich, Nano Lett. 12, 5873 (2012).
[CrossRef]

Wenger, J.

Wiggins, T. A.

Yu, N.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, Nano Lett. 12, 4932 (2012).
[CrossRef]

Zemlyanov, A. A.

Zhang, B.

Ann. Phys. (1)

G. Mie, Ann. Phys. 330, 377 (1908).
[CrossRef]

Appl. Phys. Lett. (1)

D. Ju, H. Pei, Y. Jiang, and X. Sun, Appl. Phys. Lett. 102, 171109 (2013).
[CrossRef]

J. Appl. Phys. (1)

A. L. Aden and M. Kerker, J. Appl. Phys. 22, 1242 (1951).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Macromolecules (1)

E. Giani, K. Sparnacci, M. Laus, G. Palamone, V. Kapeliouchko, and V. Arcella, Macromolecules 36, 4360 (2003).
[CrossRef]

Nano Lett. (3)

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, Nano Lett. 12, 4932 (2012).
[CrossRef]

T. Wen, R. A. Booth, and S. A. Majetich, Nano Lett. 12, 5873 (2012).
[CrossRef]

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, Nano Lett. 8, 853 (2008).
[CrossRef]

Nanotechnology (2)

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, Nanotechnology 23, 485305 (2012).
[CrossRef]

D. Grojo, L. Charmasson, A. Pereira, M. Sentis, P. Delaporte, and J. Nanosci, Nanotechnology 11, 9129 (2011).

Nat. Commun. (1)

Z. Wang, W. Guo, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Nat. Nanotechnol. (1)

E. McLeod and C. B. Arnold, Nat. Nanotechnol. 3, 413 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (6)

Phys. Lett. A (1)

C.-Y. Liu, Phys. Lett. A 376, 1856 (2012).
[CrossRef]

Phys. Rev. Lett. (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

Proc. SPIE (1)

A. Devilez, B. Stout, and N. Bonod, Proc. SPIE 7786, 77860G (2010).
[CrossRef]

Sci. Rep. (1)

S. B. Purnapatra, S. Bera, and P. P. Mondal, Sci. Rep. 2, 692 (2012).
[CrossRef]

Small (1)

A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, Small 4, 572 (2008).
[CrossRef]

Other (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite- Difference Time-Domain Method (Artech House, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Calculated near-field intensity (I/I0=|E|2/|E0|2) distributions in the vicinity of sub-wavelength spheres. The images compare (a) a plain-silica sphere, (b) a gold-silica double sphere, and (c) a single gold sphere illuminated by linearly polarized 400 nm wavelength light. All distributions are normalized to the maximum enhancement factors Imax/I0, which are 5.6 (a), 1.8 (b), and 3 (c).

Fig. 2.
Fig. 2.

Measurements of photonic jets from sub-wavelength spheres. (a) Experimental arrangement for the measurement. A high-resolution microscopy image is recorded for each position of the piezo-actuated objective so that a 3D-intensity distribution can be reconstructed for each sphere. (b) Section intensity images for comparison of the scattering response between a CS sphere and a plain-silica sphere of similar size (D=350nm). The CS spheres are made with a gold core of 220 nm diameter surrounded by a silica shell (70nm thickness) as shown by the inset SEM image.

Fig. 3.
Fig. 3.

Measurements of photonic jets for large silica spheres. The section images are acquired for well-calibrated spheres with diameters of 3, 5, and 8 μm, corresponding, respectively, to 7.5λ, 12.5λ, and 20λ. All measured distributions are normalized to the maximum intensity.

Fig. 4.
Fig. 4.

Measurement of the on-axis intensity contrasts for CS and plain silica spheres. For plain silica, the length of the light spot increases with the sphere diameter (0.32–9 μm). The apparent length for our engineered CS spheres of 320 nm diameter exceeds that of all tested silica spheres.

Fig. 5.
Fig. 5.

Normalized intensity profiles behind (z=3μm) the synthesized CS particles and plain-silica spheres (D=350nm). The measurements (circles) are compared to an offseted J02 Bessel function (solid line).

Metrics